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FOREWORD

This is an unclassified supplement to Volume IV of a series of reports describing
work performed by Yale University under subcontract to Electric Boat division of
General Dynamics Corporation., Volume IV, Report No. C417-67-075, covers the
period 1 July 1965 to 1 July 1966, Electric Boat is prime contractor of the SUBIC
(Submarine Integrated Control) Program under Office of Naval Research contract
NOnr 2512(00). LCDR, E. W, Lull, USN, is Project Officer for ONR; J.W, Herring
is Project Manager for Electric Boat division under the direction of Dr, A.J. van
Woerkom,
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I. Introduction

The standard detector that one considers for the underwater socund
problem approximates a monotonic function of the likelihood ratio based on
stationary Gaussian inputs when the input signal-to-noise ratio in each
channel is small (locally optimum), Very often the variances of the noise
processes are unknown but can be assumed to be stationary during the
decision time (quasi-stationary). When this occurs, the detection threshold
may be adjusted according to an estimate of the noise variance, It has
been shown in Report No. 18 that this procedure is desired for CFAR
detection and that for large arrays it costs very little in terms of
detectability in the presence of Gaussian noise,

It will now be shown that some nonparametric properties are obtained
by this procedure., That is, the false-alarm rate can be fixed for any
quasi-stationary input and for certain non-Gaussian inputs, of the impulse
variety, the cost and hence the miss rate are reduced,

II, Terminology

We will assume a threshold, m-input, array detector of the following

type.
¥, (t) (t)
L Filter o
Y, (t) x,(t) 1
=2~ Filter |2 =
Squarer Integrator [—| Comparer
I — O
fad
Y (t) ENs2,
Filter
Figure 1
A-1



This represents the locally optimum detector (Report No., 10) for detecting
a random signal that is common to m channels each containing stationary
Gaussian noise processes that are statistically identical but independent,
The filters are identical Eckart-type filters with a transfer function
S(m)/Nz(m), where S(w) is the signal spectrum and N(w) is the noise spectrum,
The following assumptions will be made:

1) The noise and signal processes which are the components of the

vector x(t) have zero mean and normalized time correlation

functions given by

ps('r) i E{si(t) si(t +1)}
E{s,_"’(t)}

2) The decision time T, or integration time, is much larger than

the effective width of pn(‘t'), so that the test statistic can be
assumed to be normally distributed with negligible error.
When the variance is unknown, the detector of Fig. 1 is to be modified
in the following way.

l—e ]

= \ Z Squarer Integrator S(x) Comparer

l—e O

3

Squarer |— Z _lIntegrator L@L%__,

c

t(x)

Figure 2
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This is the procedure used in Report No. 18 to obtain CFAR detection for
Gaussian inputs with unknown variance,

The false-alamm rate (a) of this detector is the probability given
the hypothesis of no signal present that S(x) > t(x) . Sinee 5(x) and

t(X) can be assumed to be normally distributed with negligible error, it
\

= EH{S(;C)- t(:'c)} -
arn{scc)-t(z)}J e

follows that

N
-

a= Prohﬂ{sﬁ)-tﬁ) >o} ~ 1-0 [
\

.

of

or, conversely,
_ . _ 1/2
Eﬂ{t(i)}z EH{S(x)} + 3 1-a) arH{S(x)-th)} , (1)

where '27 is the normalized Gaussian cumulative distribution function. Since
EH{S(T:)} = EH A(E)}- ‘I‘mcrn2 s where onz is the noise variance, it follows that

the miltiplier ¢ should be

1/2
o1 [VarH{S(x)-zt(x)}] | 2

Tmcvn

As c¢—1 asymptotically, it is sufficient that

[VarH{S (x)-A(x l}] e

2
'hnon

c-1+§"1(1-a°) (3)

for the false-alarm rate to approach a, as T gets large. The resulting
error in a is of the same order of magnitude as that implied in assuming
that S(x) and A(X) are nomally distributed,



When the signal is present, the shift in the test statistic S(x) is
given by
EK{SG)} - EH{S(E)} = Tmzaaz s

where Cq 2 is the signal variance. The corresponding shift in t(x) is

! 2
EK{z(E)f - Eﬂ{tﬁ)} - mo? .
Thus for any m > 2 the adaptive detector is consistent. That is, the
probability of detection (P) approaches unity as T becomes large. In order

to calculate the cost of this procedure it is necessary to calculate the
output signal-to-noise ratio of the detectu.s, defined as

— {s(j Eﬂs(')}

standard ~ [Var G )]

and (&)
- AEELEDED
adaptive
[Var s(') t(")Er
h
where - 2
S(x) = in(t) a |,
o 131
T-
m
A(i)-foiz(t) i,
o =1
and

t(x)=cA(X) .

.o

re

(9]
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III. Output Signal-to-Noise Ratio

The following expression can be evaluated under the assumption of

stationary noise:

Var, s(x) = 2m2Tonhh [1+ 26] + ZmTOnhhv ’ )

T
f J E{nla(t ) nlz(E) -on‘*} dt df
\y =

2To nhh

where

-1 4 (6)

7

and where h = 2 [ (1 e %) pf(z) df and is a measure of the "width" of the
0

2

9, 1
normalized correlation function of the noise processes; and 6 = m -35 h?

o

n

where h' is similer to h except that pnz(E) is replaced by pn(E) ps(E) 3
The approximation of Eq. (S) is a result of having dropped a §° term since
there is already an error of order 62 inherent in this analysis, as a
result of assumption 2), Note that the assumption 6 <<l is also
necessary for the standard array detector to approximate the optimum,

This assumption is valid for many practical conditions.

When the signal and noise processes have the same spectra, then b'e h,

For Gaussian inputs it is easily shown that ¥ = 0, If the thresl.old of
the standard detector were based on Gaussian inputs, the presence of

uncorrelated noise processes for which ¥ > 0 would increase the false-

alarm rate. It is conjectured that the class of processes for which ¢ >0

contains those processes which correspond to some impulse model, Observe,



however, that the dependence of a on ¥ is small for large m (m >> ) .

The output signal-to-noise ratio for the standard detector and for small &

is given by
- 2
-
:2
T n
SNRg+andard 2h T " (1)
\ / 1+26 = v
For quasi-stationary inputs, one can show that for 6 <1,
VarK{SGE)-A(i)} = 2m(m-1)‘1‘onhh[1+2m;1 5] . (8)

It follows frem Eqs. (3) and (8) that for arbitrary quasi-stationary inputs,

¢ =14 [221 g;}(;%) (9)
2h

Therefore the adaptive detector is asymptotically nonparametric in that «

approaches a constant (ao) as T—= for any quasi-stationary input., The
rate of convergence is limited by the rate of convergence of the test
statistics to the normal distritution, In a-ddition one would expect scme

improvement in detectability for non-Gaussian noise processes for which

¥ >0, It can be shown that VarK{S(J_c)-t&)} differs from VarK{SG) .-A(S':)}

only to order 62 provided T is sufficiently large so that B > 50 per cent.
Therefore the output signal-to-noise ratio for the adaptive detector and for

small 6 is

A-6
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I |

Vm(m-1) —85
g
SNR T n

adaptive = \/2h -
v 1+25=~ -

IV, Cost of Adaptive Procedure

Let us now equate the output signal-to-noise ratios of Egs. (7) and
(10) by considering (m- x) channels for the standard detector and m channels
for the adaptive detector. Thus x is defined as the cost in terms of

nmumber of channels for estimating the noise variance, Solving for x ylelds

(1-v+i) (1-25)

x=m-m 1- e (11)
20
mo Q-F)
For large m this can be approximated by
2
g, ht
x—+-]=+(\ll-1)m .i.__.‘.l’.+ol52 . (12)
2 02 n 2 m
n

Thus for very small input signal-to-noise ratios, Gaussian inputs, and large
m, the cost is approximately % channel (as shown in Report No., 18). Let us
now consider an example of a non-Gaussian noise input.

Suppose the input noise consists of a process that has been obtained
by squaring a Gaussian process with zero mean and then filtering out the

d.c. term, That is,
'J n(t) = l:zz(t)-ozz] 5 (13)

where z(t) is Gaussian with zero mean and variance ozz. It follows that

n(t) has a zero mean and a variance of 20 zh. From Eq, (6) it is seen that




]j E{(zz(w - 022)2(22(5)_022

2Tonhh

T
[[ [E{zh(t)th(i)} - haﬁzE{zh(t )zz(E)} + hazhE{z (t)z (E)} -0 8]dt dz

-o _l

N
21‘(7n h

v-

7
[[[32 o, P 2(f. £)+2h o, p bey . E)] dt df
- T - 1
ol 2f (-§) o2a(%) aX
0

Bf(l- 5)0,2(2) at + 6fT(1-,§) o M) ak
0 0

af(l-g)pz“m &
0]

-1

[(1- ) P2 (E) a8
=2+ ho

| (1--T-)pz“(a) a
0

Since pzl‘(E) is narrower than pzz(E), it follows that ¢ > 6 . For example,
if pz( ) is exponential, then pzh(E) & = pz2(2E) at = % pza(n) dn , and
¥ =10, It is thus clear from Eq. (12) that for the input of this example
x is negative and of the order of -l chammels, That is, the adaptive

.
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destector is more powerful than the standard detector. This improvement

in detection is significant for small to medium-sized arrays, Furthermore,
unless the array is large (m >> 10) , there will be a significant error
in the false-alarm rate of the standard detector,

The process considered in this example has definite characteristics
of impulse noise, The amplitude density has a large peak and a slowly
(relative to Gaussian) decreasing tail. These characteristics would be
exaggerated if we raised the original Gaussian process to a higher power
than 2 and correspondingly ¥ would increase further, It is therefore
conjectured that the adapted detector is more powerful than the standard
detector when the inputs in each channel are uncorrelated impulse noise,

This effect is not great, however, for large arrays (m>> L) ,
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Svmmary

This report considers the possibility of setting a detection
threshold at each bearing angle for the polarity coincidence
array., An adaptive threshold employing the number of zero
crossings of the hydrophone inputs is shown to greatly reduce
the sensitivity of the false-alarm rate to the spectral
proyerties of the noise, The range of usefulness of this
procedure 1s limited to the case whern the self-nolse of the
hydrophones is such as to allcw the inputs to be processed to
at most 5 times the "nominal" or minimm cut-off frequency of
the inputs, The analysis assumes that, in the absence of a
taréet, the hydrophone inputs are all uncorrel:ted, While
this assumption is unreasonable for sutmarine arrays, it is
conjectured that the adaptive procedure can be modified to
work in an lsotropic noise field with unknown space-time

correlation,

B-i

s
K -



I. Introduction

This report deals with the passive detection of a sonar target in the
presence of a gaussian noise background whose spectral properties are
unknown, It is common in sonar applications to display the output of
some suitable approximaticn to the likelihood-ratio detector on a cathode
ray screen and hava an cokeerver rzach a decision based on the difference
between the on- and off-target detecter ocutputs, Tiiis procedure is often
carried out in spite of the fact that the likelinood-ratio test is optimum
only in the sense that a yes or no dzscisicn is made at each bearing angle,
There is of course no theory as %o the optimum display, primarily because
such a theory would involve the subjective nature of the operator,
Psychological studies of man's decisicn-making capabilities are just now
beginning, The decision procedure is, however, not automated for a
number of reasons, The primary reason is that the detectors are based
on a greatly oversimplified model of the actval environment and at the
present time do not have the capabilities to distinguish between real and
false targets that the operators seem to have, A secondary reason is
that a complete statistical knowledge of the noise environment is not
available, and the peripheral equipment and computers needed to measure
all the necessary parameters are too costly and space-consuming,

As the detectors become more sophisticated, the desirability of an
automatic threshold decision made at each bearing angle increases, Some=~
times (if we are lucky) certain readily measurable properties of the noise
environment contain a large amount of information in just the right form
to make an automatic adjustment with minimal peripheral equipment, For

exampl®, given a number of simplifying assumptions about the noise



environment, the threshold of a standard array detector can be fixed for
non-gaussian noise as well as for gaussian nolse simply by using an
estimate of the nolse variance to set the ‘l'.l'xreshold.'“r This procedure
assumes that, in the absence of a target, the inputs to the hydrophones
are all uncorrelated and have the same known spectral shape. Of course
neither of these assumptions is valid and a realistic automatie threshold
decision would have to bake them into account,

The main conjecture of this report is that the number of zero
crossings contains a great deal of information about the space-time
correlation of the noise environment and can sometimes be used to
autaomatically adjust the decision threshold, Such a procedure would
probably require some additional processing, such as pre-filtering, tut
hopefully not an unreasonable amount, One might even conjecture that
this adaptive procedure could be nonparametric, i.e,, not require the
gaussian assumption., However, the analysis of this conjecture would
require extensive experimentation, This report is far from being a
complete study of the problem; rather it presents an example of what
can be done, ’

Consider the use of the Polarity Coincidence Array (PCA), i.e,, the
Dimus system, for detecting a single sonar target in the presence of an
isotropic, gaussian, low-pass noise field, Furthermore, assume that in
the absence of the target the hydrophone inputs are all uncorrelated.
It will be shown later that this assumption, although reasmable in some

respects, is for the purposes of this study prohibitively inaccurate for

¥See Report No, 23 for details,

-

-

-n



feasible submarine arrays, It is being made, however, to simplify the
analysis and to show a possible use of the zero-crossing count, The con-
jecture is made that the PCA can be made adaptive relative to the spatial
correlation by a similar suitable use of the zero-crossing count; however,
this conjecture is not examined. The method as well as the restrictiveness
of such a procedure are partially indicated by the results presented here
for the restricted set of conditionms,

It has been shown in Report No. 22 that for the conditions just given
the cost of clipping is small when the inputs are sampled rapidly,
relative to the cut-off frequency of the noise spectrum, This cost in
terms of the input signal-to-noise power ratio is between 0,6 and 1,0 db,
depending on the spectral shape., The cost is small in view of the advan=-
tages of the PCA, which are (1) ease of implementation and (2) invariance
with respect to a nonstationary nolse power that varies slowly relative to
the inverse bandwidth of the noise spectrum, It was pointed out that in
order to set the detection threshold it is necessary to have accurate
knowledge of the noise spectrum, that is, of the cut-off frequency as well
as the actual shape, It will be demonstrated that an autometic decision
threshold can be obtained by using the zero-crossing count in one or more
of the hydrophone inputs, This adaptive procedure requires some elementary
pre-filtering, Furthermore, this adjustment is not exact, and under
certain conditions the false-alarm rate is appreciably different from the
designed false-alarm rate, Fowever, in most cases the sensitivity of the

false-alarm rate to the spectral shape is significantly reduced,
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I1. Terminology

Let us consider the polarity coincidence array detector shown in Fig, 1,

which calculates the following test statistic:

N ﬂ‘ £
Spca = Z ':ZL Z’ sgn[xj(t+ i’r)] (1)
i=1 | 1

The x j(t) are the M inputs to the hydrophones, T is the sampling interwval,

sgn () = _i : g :8 s and N is the sample size, This test statistic is

compared with a threshold t, and the detector decides thal the signal is
present if Spca >t . The false-alarm probability a is the probability

that S
C

bhea >t given the hypothesis (H) that the xj(t) are all independent

gaussian noise processes with the same spectral shape, For large sample
sizes and a decision time (T) large compared with the inverse bandwidth

of the noise spectrum, S - is approximately normally distributed. Hence

b - Eﬂispca}

a1 ~ —

VarH{Sp - a}

where § is the normalized gaussian cumulative distribution function, or

pe

) )

t & EH{Spca? + §'l(l-a) VarH{Spca} . (3)

-

From Report No, 22 [Eqs. (10), (27) and (31)} it follows that

BuSpea) "V E (1)



and

» ' 2
Va:t‘HL c,q N '8 M=-21) |1+ —5 Z Q- - {Sin-l[Pn(kT)] ’ (5)
k=1l

where p_(T) is the normalized correlation function of the noise inputs,
n

It is convenient to define an equivalent sample size N ¥ as

eq
3 Tlis )
N 2
eq N w]
il
1+—8§2_,(1 %) sin-l[ \kT):,
T k=1

where f_ is the sampling rate (fs = % 3 N=Tf, ) . It folleows from the

orevious four equations that

M

-1
b= £ T3 1+07(1-a)

The equivalent sample size is shown in Figs, 2 and 3 as a function of the
sampling rate for a variety of spectral shapes (See Appendix A). It is
observed that Ne q varies linearly with the cut-off frequency of the
spectrum (fl) and for fast sampling varies considerably with the actual
shape of the spectrum, Let ue assume that the second break in the spectra
shown in Fig, 3 corresponds to the frequency range over which the input

data 1s to be processed, It follows from this figure that continuocus
*, . -
The output signal-to-noise ratio of Sp a4 is proportional to \[l‘?

for independent samples and to \/ for dependent samples; hence the
terminology.
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operation (fs—-w) is approximately achieved for sampling rates that are
at least five times the processing range. It was seen in Report No., 22
that these sampling rates are necessary to achievz the low cost of clipping.
In the analysis that follows it will be assumed that the sampling rate is
sufficiently fast so that Ne a is essentially equal to its asymptotic value.

III, An Adaptive Decision Threshold

Let us now consider the following threshold:

teg ? 3 (14T 0-0) (8)

where a  is the desired false-alarm probability, N(0) is the total number
of zero crossings in a single channel during the decision time (or the
average over more than one channel ), and K is a suitable constant to be
determined. The variance of t! is quite small for large but practical
decision times, In fact, the error in the false-alarm probability caused
by assuming that t' is a constant [N(O )= .tT('O_) ; the average number of
zero crossings] vanishes asymptotically as T—« in much the same fashion
as the error caused by the assumption that Sp<=a is normally distributed,

It is assumed that these errors are amall for practical decision times,

We will bypass this detail, however, by claiming that we are attempting

to set the false-alarm probability asymptotically as the decision time
increases (i.e,, a learning procedure ) and will consider only the error

in the asymptotic false-alarm probability, The actual asymptotic false-
alarm probability (c) is obtained by equating t of Eq. (7) to t' of Eq. (8)
and replacing N(0) by N(0), resulting in

el



N
a=1-F g-lu-aom/ﬁ } ; 9)

We will now discuss the reasoning behind using t' as a detection threshold.
The well-known expression for the average number of zero crossings is [1]:

s —1/2

[ 12 s(f) af

ST 0

N(0) = 2t | - (10)
f S(f) af
0

—

where S(f) is the spectral shape of the noise inputs, Let us assume that
S(f) can be written in polynomial form and that there exists a first break

point in the spectrum denoted by fl. I1f we set fi = x , we can vrite

1l
ru 11/2
[xz S(x) dx
N(o) = 2re, [ . 1)
fS(x) dx
0

This expression can be readily evaluated for a variety of low-pass spectral
shapes (See Appendix B), Recall [1] that for a "single-pole" spectrum,
N(0) = = , and our system obviously fails (a—+50 per cent). We will
assume that there is a processing filter somewhere (maybe the hydrophones
themselves ) that prevents this possibility.

Figure U is a plot of -N—(_O; versus N eq (1arge sampling rates) for a
variety of spectral shapes that can be obtained by passing white noise

through a low-pass filter having no zeros and only real poles, For these

B-10
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spectra the following conclusions can be reachtied, For spectra that fall

off sharply |S(f) = -——-1——2- sjn>3 , there is very nearly a linear

n -
£
1

relationship between Neq and N(0). For spectra that fall off slowly but

N
are then cut off sharply at some frequency £, >f, , the —29 curve
2 1l ¥{0)

has the same linear relationship for f2 < 2f1 and falls off somewhat
for larger 1‘2.
It follows that we should pre-filter the noise inputs with a filter

having the transfer function

H
H(.‘)“‘) = _'(ﬁ ’ (12)

where @, is equal to the processing frequency in radians, The constant K
needed for the decision threshold [Eq. (8 )] is seen from Fig. L to be
2,740 . If the noise spectrum begins to fall off slowly at some frequency
b4

1l
false-alarm probability given by Eq, (9). This error will be examined in

considerably less than f2 , then there will be an error in the asymptotic

more detail in the next section, In addition to the spectra indicatad in
Fig. L, the presence of zeros in the spectrum (filter transfer function)
will also be analyzed (spectra restricted to be monotonically decreasing).

It is conjectured that the suboptimum PCA discussed in Report No, 22
will behave similarly with respect to the adaptive threshold and in fact
be somewhat better for large arrays. This conjecture is based on the

fact that Ne q of the suooptimum device has a larger relative increase thaa

B-12
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the optimum PCA as the noise inputs, prior to processing, vary from white
to one having a single-tuned spectrum, It follows that the contours of
Fig. L will probably be even closer to a straight line for the suboptimum
PCA,

IV, Error in Asymptotic False-Alarm Probability

The actual asymptotic false-alarm probabllity can be determined from
the designed false-alarm probability a, and Eq. (9) using Fig. L (or the
data in the appendices). It will be assumed that the input data are
processed according to the previous section, The false=alarm rate. is
shown in Fig, 5 for a variely of spectral shapes and a designed false-alarm
rate of 1 per cent, The abscissa is fl/i‘2 s where fl is the cut-off
frequency of the noise spectrum and f2 is the processing frequency. As
indicated previously, the only difficulty arises when the noise spectrum
falls off slowly and is significantly reduced by the time the processing
frequency is reached. The least favorable case ("single-pole" spectrum)
1s shown again in Fig. 6 for different designed false-alarm rates,

Thus we see that some knowledge of the spectral shape is necessary
for an accurate setting of the false-alarm probability. Suppose for
instance that we know that the spectral shape is always ﬁlat

_[§_(Q)_-ﬁf_)l < 0,2 below some frequency f.. The maximum error in a

s(0) -
caused by processing the inputs out to f2 = Sfl can be obtained from
Fig. 6 for the value fl/f2 = 0,4 . This is quite a reasonable maximum
error, Sometimes one has some other specific knowledge of the noise
spectrum that enables one to make an alternate setting of the threshold.

Consider the following example.,
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Let us suppose that the spectrum commonly appears to be "single-tuned"
with the cut-off frequency in the vicinity of 1250 cps. Furthermore, let
us assume that the self-noise of the hydrophones is such that processing
out to 5 kc seems reasonable, Finally assume that the noise spectrum
never falls off faster than 12 db/octave, We wish to set the false-alarm
probability automatically in such a way that gross errors do not occur
for noise spectra other than the nominal one. We therefore process out
to 5 kc and set the threshold to give no error for the nominal spectrum
(K = 2,41) , The resulting actual false-alarm probability is shown in
Fig. 7 for a designed false-alarm rate of 1 per cent, Included in this
figure is the actual false-alarm rate for the non-adaptive detector whose
threshold is based on the nominal spectrum, We can reach the following
conclusions,

For the non-adaptive detector, the uncertainty in the spectral shape

causes a possible variation in a of 5 db, A similar variation is caused

by a 20 per cent uncertainty in the cut-off frequency (1 ke < fl = 1.5 ke) .

For these unceriaintles in the spectral shape, the threshold of the non-
adaptive detector can be set to guarantee a maximum error in a that is
less than % 5 db, However, the threshold of the adaptive detector can
be set to reduce the maximum error in a to * 0,7 db for the same
uncertainty in the spectrum, Figure 8 is a similar plot with the only
difference being that the inputs are processed only out to the nominal
cut-off frequency, With this type of processing the false-alarm rate
becomes relatively insensitive to the spectral shape, As a result the

non-adaptive detector threshold can be adjusted to guarantee a maximum
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error in o of only ¥ 1,5 db for a 20 per cent uncertainty in the cut-off
frequency. On the other hand, the adaptive detector introduces virtually
no error for this type of processing,

V. The Effect of White Self-Noise

Finally we will consider, in a limited way, the effect of allowing
a zero in the spectrum, DMore specifically we will consider a spectrum

of the following type:

)

REIRE)

is still the first break

(13)

where fl/:t‘3 <1 and fl/f2 <1 . Hence f;

point in the spectrum, This spectrum can alternatively te wiitten as

S(£) = | = 4| s (1k)
{ l1+-f£1-)| :[1+(_fi‘;)-.

3
T

is regarded as the processing filter, the zero of the spectrum corresponds

where q is a constant equal to Thue, if the seccnd term

to a minimum level in the noise power spectrum, Small values of q would
always be present as a result of the self-noise generated in the hydrophones,
In fact, in the absence of spccific knowledge of the signal spectrum, the
inputs are normally processed out to some frequency determined by this
self-noise (:t‘2 < f3) in the hope that the signal spectrum is similar tr

the incoming noise spectrunm,
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Let us now aswsume that the adaptive threshold is adjusted under the
assumption that the noise spectrum is white (prior to the processing
filter) or K = 2,3455 . The actual false-alarm rate (ao = 1 per cent)
is shown in Fig. 9 for a number of locations of the pole where the
abscissa represents the location of the zero, For small values of self-
noise (fl/f3 small) , the spectrum falls off at a rate slightly less than
6 db/octave, and hence the error in a increases, Since the threshold was
designed to give no error for white noise, the error starts to decrease
when the self-noise becomes dominant in the vicinity of the processing
frequency. Both effects will be far less noticeable for spectra that fall
off faster than 6 db/octave, No analysis has been made for higher-order
seros or for a simple zero whers fl/f3 > 1 (Spectrum increasing in
same frequency range).

Let us re-examine our last example (nominal cut-off frequency of
1250 cps). Let us now assume a self-noise =20 db that of the low-frequency
noise, Since the spectrum can fall off as fast as 12 db/octave, it seems
reasonable to process cut to 5 ke, Figure 9 tells us (fl/f2 = 0,25 ,
i'l/t.‘3 = ,1) that for the assumed spectral shape the false-alarm rate is
increased by less than 1 db., For sharper spectra this increase is smaller.
It follows that the previous decision to set the threshold for the nominal
spectrum (no white noise) is about right, This will insure a maximum error
in the false-alarm rate of about + 1 db within the tolerance limits.

It appears that whether we are setting the threshold on the basis of
some lowest cut-off frequency or some nominal cut-off frequency, the
adaptive procedure works well for processing frequencies as large as L

times the nominal (lowest) cut-off frequency. For reasonable amounts of
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self-noise, there does not appear to be much advantage anyway in processing

to same higher frequency., In fact it is the presence of self-noise that

makes the adaptive system work. For with extremely small amounts of self-

noise, one should process the inputs to some relatively high frequency.

If one processes to some frequency f2 > 10 fl

detector is no better than the non-adaptive detector.

, then the adaptive

VI, On the Assumption of Uncorrelated Hydrophone Inputs

Let us assume a linear array of hydrophones., The mean of the PCA

detector output is given by

M
EH{Spca} -N % 1+ %‘ Z a - %) sin'l[ps(kd)] , (15)
k=1

where p, (d) is the normalized spatial correlation between two hydrophones
spaced d feet apart. It follows that the threshold [Eq. (7)] should be
modified to be

21 - §)

'
Neq

s (16)

t =T % [1+8] + 3 -a)

M
where R = !;:- Z (s = ﬁ) sin~t [p s(kd)] , and N} 5 is somewhat smaller than
k=1
Neq as a result of the spatial correlation. We wish to indicate that the
assumption of statistical independence (R = 0) is prohibitively inaccurate
for feasible submarine arrays, at least as far as setting a detection
threshold is concerned, To do this we assume that Né q can be accurately

determined (say, by the zero-crossing count)., It can easily be seen that

the error in the false-alarm rate, due to R # O , can be calculated from
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7
l1-a) =5 -0 - —*‘1—) R (a7)

2(1-ﬁ

Let us now place the hydrophones sufficiently far apart so that the
error in a caused by the spatial correlation is "only" +3 db for a designed
false-alarm rate (ao) of 1 per cent, [In reality this error is very
insensitive to g and varies from 2 db to L db as a, varies from 10 per cent
to .01 per cent.] We will call this spacing the minimum spacing for

"uncorrelated" inputs, Thls spacing is achieved when

-\/_;L._ R < 0.25 (18)
2(1-3)

It has been shown in Report No. 1 that for a three~dimensional isotropic

noise field and a single pole-spectium,

C

2nf1kd

pglkd) <

where c 18 the speed of sound in ft/sec, This upper bound is very nearly
achieved for small values of p_ (kd) and for arrays that are not steered in

the end-fire condition., For these conditions

sl (19)
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where M is very nearly equal to M for small values of M (M < 6) and is less
than M for large arrays. It follows that the "minimum" spacing is given by

fi 1/“5,;' . (20)
1

d> %
X ‘\ﬁ(l )

The equivalent number of uncorrelated samples is normally quite large,

resulting in a large d. For lightly correlated inputs with single-tuned

spectra, Ne' i1s of the order of 10T fl (see Fig, 2 or 3), If we now

q

assume that fl <5 kc , a lower bound for the minimum spacing becomes

d > U ——ttme \T' . (21)

‘\/2(1 -3)

varies from 2 to 10 as M varies from 2 to 50,

M
2(1 - )

The function

The minimum corresponds to M = 2 and hence d > 90‘\/‘17‘ ft. Thus for
wide spectra (fl = 5 ke¢) and short decision times (T & 1 sec), an array
with 2 hydrophones spaced 90 ft apart has crudely independent inputs. On
the other hand, for a six-element array, d > 200‘\/'_1‘-' ft , and hence one
needs a 1000-ft array even for short decision times, We conclude that the
spatial correlation of the noise field must be considered for practical
submarine arrays in order to set a decision threshold independently at
each bearing angle,

It is speculated, however, that a similar procedure can now be
carried out to adapt for the spatial correlation as well as the time
correlation, For instance, it would seem reasonable to try an adaptive

threshold of the following type:

B-24

#

—a



£,(M)
woe g 1] e 22— Flao0 ) —2—> , (22)

K, N(0) ° Yk, N(0)'

where fl( ) and f2( ) are suitable functions and Ky and K, are suitable
constants., It should be pointed out that the variance of t" 1s no longer
negligible and will have to be considered, However, for large arrays, if
N(0) represents the average number of zero crossings over all the inputs,
the cost introduced by the variance of t" should be small. A check of

the validity of this modified adaptive threshold would be quite cumbersome

and has not bteen carried ocut to date.
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Appendix 4 Calculation of Neq

Neq was defined according to Eq. (6) as

T¢

8 )
N
1+ -;82- zl 1 - -g-) {sin'l[pn(k'r)]
k=

where pn('r) is the normalized correlation function of the ncise inputs,

N
e
? 2

Given p_(7), N__ can therefore be calculated directly on a computer. The
n eq

correlation function is obtained via the Wiener-Khintechin theorem from

the power spectrum:

p(v) =[S(f) cos 2nf df , (A-1)
0
where p n("-') = M . Assuming a first break point in the spectrum
p(0)
occurring at fl and setting x : -i.g- s one obtains
1
p(kr) = fl[S(x) cos xy dx s (A=2)
o]
2nkf1
where y = —= , We will consider three classes of power spectra.
£

s
Case 1., Consider spectra of the form

5(x) = —Ep (a=3)

l1+x

where n is any positive integer. Equation (A-3) can be evaluated directly

[2], resulting in

B-26

-~

-

Yy

¥}

—d



n 2k-1 -
-y [Bj_n ‘7_-2“] 5
p(k7) = £5 5’-‘5 Ze 2 sin| 42K nl n+ycos 2k2';11 n tA=l)
k=1
vhere
n
p(0) = £ 2 Zsin 2“2;1 T .
k=1

The limiting case {(n— =) is of course

plkt) — £, §_i_;_x . (A-5)

The calculation of Eq., (6) is then straightforward and is plotted in Fig, 2
for n=1,2,3, and = versus the normalized sampling rate f s/fl . Observe
that for f s/fl = 100 , Neq has essentially reached its asymptotic value,

We will therefore use this calculation of N - in order to set the threshold.

q
Below is a table of these results.

N, c{Tfl 11.530 L.691 3.883 3.163

Case 2, Consider spcctra of the form

S(x) = > , (A=6)
(1 +x2)(1 + pPe2P

where p = fl/fZ and n >1, This can be factored into the form
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o2n(, =2 on-l, 2n-6_ 1)

1 1
S(x) = -
[l e )n+1p2n] 1+ 1+ p2nx2n
(A-7)
This can now be transformed term by term with the correlation function
: -1
corresponding to S'(x) = for 0 <m <2n-1 being O for m even
1+ p?nxﬁn
and
n oy .. [gzk.l) ]
- = 8in n
F"(k“')“fl-zﬂ-—l—Zl e P 2n sinj——ak-l)mn +Z cos Zk-1 n
n pm 2n P 2n
k=1
(a-8)

for m odd, Note that for n odd and greater than one, this procedure leads
to an indeterminant form for the value p = 1 , For other values of p
there is no difficulty.

For example, let us assume that n = 2 , Then it is readily

determined from Eqs. (A-7) and (A-8) that

R A
P(kf)'flgrrlplq eV +e p.\/‘21p3 sin(ﬁ+;\z/,—€)-pcos(“+#?) .
and hence
.
kt) = L T e PV 3 nln . Lo ("JL.)
RfkT) [1+£(p3 p)]e ® P Sinu+p-\/? pcosn+p\[2_,
5 -

(8-9)
Thus for a given p Eq. (6) can be calculated in a straightforward manner,

As before, the value for Ne at fa/fl = 100 will be assumed to be the

q
asymptotic value for N, Q" We will now tabulate the results (hle q/Tfl) for

a variety of values of n and p,
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P .1 .25 £ 1 5 10
n
9.133 7.2485 5.630 4,103 = =
9.358 7.198 5.230 3.L06 L. L8 k.62
9.401 7.210 5.132 = - _
Case 3. Consider spectra of the form
1+ 'x2
5(x) = 4 (A-10)
(1+ x2 )1+ p2nx2n

This can alternatively be written (provided q' <1 , which guarantees that

fl is still the first break point in the Spectrum) as
l N q

1+ x2 )1+ p2nx2n ) 1+ p21'13'__2n )

S(x) X : (2-11)

It 1s clear that the correlation function can now be obtained by a linear

snperposition of case 1 and case 2, Hence for n =2,

- v V—z_l h"' (h+1) f n
okT) = £, 2t lo 4o P Eralp t3) o8 L) p cos|® + L)},
and hence,
5 -==[ 1
P, (k7)) = 1 0 -~ (e +te p\/? (p3+9~p-—-2( p+1 ) sin(-ﬁ + _L)
A 2
1"'“\"/;’(!)3-1)'*9—(‘?—‘;1}-2) P
n, I
- p cos|y + (a-12)
(ﬁ \/?p)

We will now tabulate the results (Neq/Tfl) for the case n =2 ,
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qQ 0 .001 | ,003| .01 .05 .10 .5 1.778| =

P

| 9.358 | 9.485 | 9.750 | 10,705 {15.512 | 20,436 | 36,248 | —- | 16,910

_.25 7.198 | 7,20 | — 7.350 | 8.565 | 9.679|14.177| — |18.76L

.5 5.230 | — — | 5.308| — 5.888 | 7.279| 8.W51 | 9,382
B-30
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Appendix B Calculation of N(O)

The average number of zero crossings can be calculated directly from

the spectral shape from Eq. (11).

- _1/2
fxa S(x) dx
o) = 27 £,| % (B-1)
S(x) dx
Jome

This expression can bte evaluated readily from the results of the previous
appendix simply by recognizing that

[S(X) dx = p(0)

0
and (B=2)

fxz S(x) dx = pt(0) |,
. 0

where p!(0) is given by Eq, (A-8), where m is suitably defined. Let us
explicitly evaluate N{0) for the same classes of power spectra considered
before.

Case 1. For power spectra of the form

S(x) = —x , (8-3)
1+x2n

we obtain from Egs, (A-lL) and (A-8) that

n
ce (@k-1)
p(0) fl?ﬁz sin = | IS

k=1l
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and (B-k)

n
pl(o).flazln-z sin-gk_-_lz}n »
1 2n

vhere the latter result is valid only for n >2 [Recall N(O) == for a
"single-pole" apectrum.] . Using the identity

n

2
Z sin(2k -1) 0 = £30_108
k=1 sin 0
one readily evaluates Eq, (B-1) as
= = 1/2
sin
2n (B-5 )

No)-ZTfl_i;T 3
2n

for n >2 . The results are tabulated below.

n 2 3 12 o
W/Tfl 2 1.l 1,216 1.155

Case 2, For power spectra of the form

S(x) = 1 ; (B-6)
(1+ xz)(1+ panxzn)

p(0) is directly determined from Appendix Aj however, a different factoring

procedure is needed to evaluate p!(0).

1 1 1+ 2nx2n-2 _pan2n-h benet (=1 )n+1p2nx2

x%5(x) = - +
(1 T )n+1p2n) e 2 o p2nx2n
- (B-7)
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One can now use Eq. (A-8) to determine p'(0). For example, let us assume
that n =2 , Then

—
pl(O)-flgi—j';E _1+py?2_+%.\/_2-_2-_1 » (B-B)

and from Eq. (4-9),

p(O)ﬂflgi—l—E l+p3%-2_\-p-\/—2'2—|- . (3-9)
+p
Hence from Eq. (B-1),
2 ¥
N(O) = 2T £ Mﬂ_ . (B-10)
Ph"P +‘\/?P

These results [N(O)/Tfl] will now be tabulated for a variety of values of

n and p.
P ol «25 5 1l 5 10
n
1 6,3246 L 2,828L 2 — —
2 5.140 3.100 2.0lh 1.288 1,766 1,9215
3 4. 955 2,954 1.908 _ — —_
Case 3, For power spectra of the fom
S(x) = X + — 5 (B-11)
Q _”:2 )(1+ p2nx2n a +p2nx2n)

we can use superposition of the previous results to obtain N(0). From
Eq. {A-=12) we have for n = 2




\/?

1+p

From Eqs, (B-8) and (A-8) we readily obtain

J’ \I—'(P+)+f'§

p'(0) = £

Hence from (B-1),

We will now tabulate the results [N(O YT

N(0) = 27T

b4

[p3-p+§ (p"+ 1)J

5;;:;;
n_1 1 2'\[—’[ q J
(Z P +5 +3 (p7+1)
‘5:;1;;5 P +5~|P"*P P*
|
\—/g-q[p+p+9(p+1)]-p2
1

/—' [1)3 p+3 (p +1)] +

i‘l] for the case n= 2 ,

(B-12)

(B-13)

(B-1L)

B-34

23 (19hh), p. 282; vol, 24 (19L5), p. L6,

2, Bateman Manuscript Project (California Institute of Technology),
Tables of Integral Transforms, vol, I, McGraw-Hill Book Company, 1$5L.

q 0 .001 .003 01 .05 .10 .5 1,778 | =
P
.1 |5.140 | 5,405 | 5,892 | 7.267 [ 11.372 |13.697 [17.950 | — |20
5 2.0 | — — 2,102 | — 2,486 | 3.185 | 3,720 | L
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Summary

The ambient noise model proposed by Talham (JASA 36, 15l1,
196L) is used to estimate the vertical directionality of ambient
noise for a variety of velocity profiles and hydrophones located
100-500 feet below the ocean surface, Except when the
hydrophone is located in a region of negative velocity gradient,
the model indicates that much of the ambient noise arrives from
a near-horizontal direction. The calculated difference between
horizontal and vertical intensities exceeds 20 db in a number
of cases, When the hydrophone is located in a region of
negative velocity gradient, there is a null in the noise
directivity pattern in the immediate neighborhood of the
horizontal, Aside from this obvious effect of ray gecmetry,
the pattern is not markedly different from that of a hydrophone

located in a region of positive velocity gradient.



I. Introduction

In underwater sound detection systems, ambient noise plays a major
role in limiting target detectability. It has been suggested by several
researchers that a large contribution to the total ambient noise 1s
generated at the surface, both by wave splashing and by wind blowing
across wave tops, In particular, R, J, Talham(l) has used a model in
which the ocean surface is considered planar and covered by a uniform
distribution of independent noise sources. The purpose of that paper was
to determine the vertical distribution of ambient noise as received by a
hydrophone located at the bottom of the ocean, Curves presented there
compated the model with some actual measucrements @) and showed good
agreement at low sea state, It was shown that the largest amount of noise
power was received at nearly horizontal angles, and that the noise
intensity decreased as the vertical angle increased, reaching a value
10-20 db lower when the array was beamed straight up.

The question arcse as to whether this same general vertical
distribution of noise would be observed by a hydrophone array near the
surface, say between 100 and 500 feet below the surface, This paper
undertakes to answer that question. The model of surface noise discussed
by Talham 1s used as is the general fabric of his derivation. However,
since the hydrophone is near the surface, the fine structure of the
sound velocity profile near the surface becomes important, and consequently
different profiles are used. The one employed by Talham ignored this fine

structure near the surface as being insignificant to measurements made at

the bottom of the ocean,
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II, Derivation of Vertical Distribution

The geametry used by Talham with slight modifications is shown in
Figure 1, A hydrophone located at depth H i1s directed at an angle O from
the horizontal, and for simplicity is considered to be omnidirectional with
respect to azimuth. Noise sources are assumed to be located uniformly
over the surface with density D sources per unit area., The sources are
statistically independent, and each emits P-g(Ol) watts per unit solid

angle into the water at an angle O, with respect to the horizontal.

1
- ring 3
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\ 1/ ringl 7 I\
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Flgure 1 Geometry of the Model

Talham shows that the intensity (watts per unit area) of noise
arriving at the hydrophone between the angles Oo and 0°+ A9 , and due
to those sources lying in the innermost surface ring (ring no. 1) of

area As, is

AL, = DPg(0) )W exp [-2a.ﬁ1] [sin °1] = [211 cos ooaa:] @)

where P and D are defined above and W is the ratio of backward-to-forward
spreading loss, which plays a significant role in Talham's derivation and

is given by

[

o



2

cos &
w=W(o°)=( ,.,1) (2)

cos @
o

The attenuation of the noise energy is given by the exponential function
where a 1s the attenuation constant and Rl is the ray path length from
the hydrophone to the surface. The factor 2n cos OOAO is the solid
angle at the hydrophone inside of which noise from As can reach the
hydrophone, The factor 2n cos Oo accounts for the fact that this solid
angle decreases as Qo becomes larger, The inverse sin O

1

takes into account the rapid increase in As as 01 decreases, and therefore

the rapid increase in the number of noise sources contributing to AI.

dependence

This dependence 1s most clearly seen in the following argument, where for

simplicity the rays are taken as straight lines. Thus 01 = Oo s and

as shown in two dimensions in Fig, 2, the areas AA and As are related by

M = As sin 01 for small AS.

Pigure 2  Simplified Geometry Illustrating [sin o]] ~1 pependence

Ignoring attenuation and considering the usual inverse square law
for spreading loss, each noise source in As produces at H an intensity
proportional to 1/B12 . However, AA is proportional to 912 cos Oo for
a fixed AC and consequently As is proportiocnal to R.lz cos 0 c’/s:Ln 01 .



Thus the number of noise sources in As is proportional to R12 cos 9 o/sin ol
and the aggregate intensity at H varies as cos © o/ sin o, ,
Finally, Ol and Rl are related to Oo by standard ray tracing relations.

For instance, by Snell!s law we have

°§ﬂ = CV - csurf (3) i
cos Q cos 01 [ 3
o

where ¢ d and ¢ are the velocities of sound at the hydrophone and

hy
surface respectively. The constant Cv is peculiar to the ray arriving

surf

at the hydrophone at angle Oo and is normally called the 'ray parameter,'
Also contrituting to the total noise arriving at angle Qo is energy
that arrives at As along rzys originating at greater distances on the

surface, as shown in Fig. 3 in two dimensions,

X -« ring no, 1

| }/,‘7_'1’“1

H-%Ln
\ =
o

Figure 3 ContriLutions to Intensity from Distant Sources



The cases of angles Oo below horizontal are also shown to indicate
the similarities and differences between the two cases, Since a given
ray has associated with it a particular parameter C, by (3), at each
depth all the rays that finally reach the hydrophone at angle .*.OO
exhibit this parameter, and thus in Fig. 3 all rays shown have angle 02

as 1llustrated, where c(ya)

cos @, = —-c-v-—- (L)
and c(yz) is the speed of sound at depth Yy (Note that since 7o is
positive downward, angles are measured positive in a clockwise direction.)
This symmetry, which requires that the surface and bottum be parallel,
simplifies the addition of ray components. We now consider the two cases
separately.

III. Upward-Looking Case (O0 <0)

From Fig. 3 it is seen that there exist components of the total
intensity at angle 00 originating at X, x3, etc., The ray originating at
Xy travels a total path length of 2R+P‘.L = 31-‘(1+2R2 before reaching the
hydrophone, and makes a reflection off both the bottom (reflection
coefficient B) and the surface (reflection coefficient ¥ ). Since the
geometry is otherwise the same as for AIl, and since phase shift is
unimportant (the ncise sources are independent), the contridution due to

the sources at x., is, frem (1):

3
ATy = AT, BY exp[-h aR] ()

Consequently the total intensity at H due to all such conbributiions is

AT = Azlf' yigt exp[-hi aR] . 1 (6)
T:l 1-78 ex.p[-haR]

AL

24
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To obtain the final form, we remove the dependence on the size of the
s80lid angle at the hydrophone by deleting 2n cos Oo in (1), divide
through by 40, and let A0—0 . This yields for the (upward-looking)

vertical noise distribution Nup(oo)

DPg(Ol)W exp(-2a P‘.l.)

Ny (O) = (1)

(sin 01) [1- By exp(-haR)J
Another way of considering the deletion of 2n cos Q‘o is to ccnsider the
hydrophone array to be no longer azimuthally omnidirectional, but to have
an azirmthal bveam width of, say, o, measured normal to the ray entering
at angle 6 . This replaces 2n cos 6, in (1) by the single term o,
which then of course is retained in (7). As the final results are to be
normalized anyway, the two approaches are equivalent.

It is possible that the hydrophone can be located at a depth such
that rays arriving at angle Oo cammot reach the bottom, This is true
whenever

& < Cpottom (8)

where Cpottom is the speed of sound at the ocean bottom. A typical
example is shown iu Fig, 4 along with a velocity profile. For a given Oo,
Cy given by (3) is a sound speed which is equal to the speed of sound at,
say, cepth d. Thue by (L) the ray angle must be zero at depth d, Since
cos 6, in (4) cannot exceed unity, no ray with parameter Gv as shown can
penetrate bencath depth d. Thus in Nup(Qo) of (7), the term B is removed

(or set to uaity), and path length R is as shown,
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Figure 4 A Situation with No Bottom Reflection

IV. Downward-Looking Case (Oo >0)

Following the derivation for the upward-looking case, it is clear that
the only difference in the two cases is that the ray reaching the hydrophone
at an angle below horizontal must have travelled further, and if the
bottom is reachable, will have sustained an additional bottom reflection.

Thus from Fig, 3 it is seen that a ray must travel further by a
distance R+R2 -R1 = 2R2 than a ray arriving above the horizontal,

and that
Ngoun (%) = Nup(-Oo) B exp(-LaR,) 9)

Again, if the bottom cannot be reached, B is set equal to unity,

V. Various Propagation Situations

As was suggested by the sample velocity profile given in Fig. L above,
Cv = chy d/cos Oo determines a velocity of sound for each angle Oo. Given
a particular profile, CV thus delineates various regions in the ocean in
which the given ray may exist, It is interesting to consider the

possibilities as a function of Oo.

g . v



A typical contour is given in Figure 5 along with twe different
hydrophone depths, Hl and HZ' Associated with Hl are three rays 1,2,3
showing the three possibilities for rays arriving at Hl‘ Ray 1 is '

confined to the region near the surface because Cv < Crode * where
1

Crode is the speed of sound at the peak in the profile. Ray 2 has a very

long path length for all contributions but the nearest, and also ray 2

does not reach the bottom since Gv Ray 3 is seen to reach

5 Sbottom *
the bottom, as will all rays arriviig at angles greater than that of ray 3.
Clearly for Hl all rays do reach the surface and thus there is no
mull in the intensity due to surface noise, This is not true in the case
of a hydrophone at H2 , as shown by ray A, which cannot reach the surface

(or originate at the surface) since ch <C o de * Thus a null in

surface noise is expected for all angles Oo satisfying

C
H,

cos 6, > (null exists) (10)

c
mode

where Cy is the speed of sound at H2. As 00 increases further, so that
2

this condition 1s no longer satisfied, then rays similar to ray B or
ray C are observed,

Combining these thoughts into a single representation, one expects
that a polar plot of Nup(Oo) and N down(oo) vs. 6, will exhibit fairly
well-defined regions, each corresponding to one of the ray types discussed,
This is suggested in Figure 6, where the contour and depths from Figure 5

have been used.
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Figure 5.

Various Propagation Situations,
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Figure 6 Polar Delineation of Ray Type Regions

It is expected that there will be a rather rapid decrease in Nup(Oo)
and N down(oo) at the boundary between regions 1 and 2, since the path
length abruptly becomes much larger, and consequently contributions AI 3
AIS’ etc,, are more attenuated, Such a rapid decrease is not expected at
the boundary separating regions 2 and 3, however, since of necessity the
grazing angle with the bottom is very small near this boundary, and
consequently the reflection coefficient is near unity.

For completeness it should be remarked that for profiles where
cbottom < cmo de ? regions 2 and B are absent, since then any ray

penetrating into deep water will always reach the bottom.

VI. Computation of Noise Distribution

It is noted from (7) that the vertical distribtution N (0 ) [and

down(oo)] requires that 0., R, R, and § = p( bottom)

be known. To this end a ray tracing program was written, and this was

consequently N

applied to several profiles approximated piece-wise by straight lines. il
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The ray tracing program is described in the Appendix. The significant
outputs of this program are Rl and R2 » the ray path lengths from the
hydrophone to the surface and bottom, respectively, B was found using
the curves shown in Figure 7, originally reported by Marsh and Schulkin. 3)
The same surface reflection coefficlent ¥ and attenuation constant a as
used by Talham were also used, namely, ¥ = 1 , and a = ,0038 f3/ e Np/kyd ,
where f is in kilocycles per second, A different value of ¥ is also tried,
as discussed below. Two source directionality functions g(Ol) were used,
g(ol) =1 and g(ol) = sin 0 although others were checked and showed
no peculiar features. Talham showed that at least on the ocean bottom,
and at low sea states, g(ol) = 1 agreed most closely with availablie data,
The results obtained are presented in Figures 10-18 as polar plcts
of Nup(oo) and N dovm(go)‘ All plots are in db relative to unity, with
P and D normalized to ons, Two values of frequency were used, LOO cps
and 1000 cps, as being representative of the range of interest. Four
sound velocity profiles (L) were used, as given in Fig. 8. Attention was
concentrated on the Bermuda profiles, while the Iceland profiles are
included for purposes of comparison, Various features of these graphs
are discussed belcw,
Certain situations can be handled analytically for comparison with
computer results, and to show the major effects contributing to Nup(o o).
In particular the cases where Oo is near 0° or 90° can be studied,

n . n
Assume that @ =3 . Then from (7) we have, since & =0"=3,

C-11
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i DPg(§) o~2H 1)
up'2 1-7B(§) e"".;ﬁ
_DPe(3)

: (12)
1-7B(3)

where H and B are the depths of the hydrophone and bottom respectively, and
the dependence of B on the bottom angle is indicated as B(g) . The
approximation in (12) stems from the fact that at frequencies in the hundreds
of cycles the exponents in (11) are very small,

At the other extreme, when the hydrophone lies in a region of positive
gradient, as at Hl in Fig. 5, and 0 3 is small enough so that the ray 1s
confined to depths less than D .. (region 1 of Fig, 6), then R, and R,

are reasonably small, W-x1 , and p=1, Thus £rom (7)N (0 ) becomes

up o
approximately, with ¥ = 1
, DPg(e )
N, \00) =~ - (Oo small) (13)
P sin 0, (LaR)

This may be reduced further if the velocity gradient G at the
hydrophone is approximately constant up to the surface. Then the radius
of curvature r of the ray may be sho\m(S) tobe r= cv/o . Using the
geometry of Fig. 9, where R2 is the distance from H to the maximum depth
reached, it is seen that
91 = r(Ql-Oo) 5 R2 - rQo p R= rOl L)

and

i

(15)

cos Oo - COS9 01 =

C-14
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Ray Path Geometry for A Constant
Positive Velocity Gradient From
The Surface to The Hydrophone
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But since G, = °hyd/°°s 9, » (15) yields

cos Q = (1-k) cos R

where
c
laek =1 - E-Hi - .Es‘—l-xi
hyd Chyd
Thus (13) now becomes
DP g(Ol)
N“ (Oo) =
P la sin are

2
Using cos 0 =1 - %— twice in (16), (18) then yields

DPg(Ol) G cos Oo

Nup(oo) = (cao small)

2'
Lha sin Ol chyd \/2k+ (1-k) Oo

The two forms for g(Ql) treated here are g(Ol )=1 and

g(Ol) = gin Ol . These forms yield the results

DP G cos Oo

Nup(Oo) = if g(Ol) =1

La chyd[Zk +(1-k) 002]

DPG cos ©
o

2
La chyd'\lzk* (1-k) %

if g(Ol) = gin

Nup(Oo) =

(16)

@a7)

(18)

(19)

(20)

o

(1)

The approximation sin 91 = Ql is used in (20). 4s an example, for

the Bermuda winter profile, with the hydrophone located at 100 ft, k has
the value ,0003 ., Thus the term 2k is less than (l-k)G\c’2 if 00 > 1.4
degrees. The forms of (20) and (21) show that as 0,0 , Nup(oo)

approaches the values

C-16
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% if g(o) =1
N, (0) - (22)

P DP :
mVZk if g(Ol) = sin 01

It is noted that the only dependence on the velocity profile for
00 = 0 occurs in k, Thus, for example, in any ocean for which a constant
positive velocity gradient exists from the surface to the hydrophone, and

for H =100 ft and f = LOO cps , we have in db (with P =D =1)

35.9 db if g(6)) =1
Nyp(0f= (23)

c
- _hyd -
b 3%.9 -5 log,( 558 db if g(Ql) sin 0,

For both the Bermuda and Iceland winter profiles (23) yields 19.8 db for
the g(ol) = sin 01 case. These agree closely with the computer results,
as seen in Figures 10 and 15, When the hydrophone lies in an ocean region
for which the gradient is negative, as at H2 in Fig. 5, the simple
geometric techniques used above fail due to the complicated ray path.
Shadow regions are easily found, as mentioned in Section IV, but actual
results for Nup(oo) require a computer. In all cases N wn(oo) is easily
found from Nup(Oo) by means of (9).

It is instructive to consider the physical causes for the various
results obtained in (22), Beginning with (13), it is seen that there are
two separate contritutions to Nup(oo). The first is the inverse sin 01
effect, which arises geometrically (see Fig. 2) and relates the number of
noise source elements spanned by the beam of the hydrophone, This effect

is cancelled, of course, if it is assumed that g(ol) = sin@,. Thus the

c-17 1




magnitude of this effect can be judged from a comparison of the graphs with o
g(Ol) =1 and g(ol) = sin @, , as in Figs. 10, 11, 1S, and 16, The .
effect is present in the other cases as well, of course, but (22) is only
applicable to the cases corresponding to these figures., The second effect
is that of the inverse path length dependence, which is easily traced to (6) il
and is due to the summation of contributions from remote surface elements.
It is thus seen that these remote sources add up significantly at small
values of 0, producing as in (18) an inverse 8 dependence (where o, is
small when 0° is small)., This is true for low frequencies since
atteruation is then small, The magnitude of this effect is demonstrated
in Fig, 1L, where the complete Nup(oo) and N down(go) are compared with the
corresponding ambient noise levels when only the first contribution to the
noise, that from rirg no, 1 (see Fig. 1), is considered. These values
were obtained by setting ¥ = 0 in (6). It is seen that the noise level
due to the first contribution is independent of frequency for upward-
looking cases and only slightly dependent for downward-looking cases, M
The independence is due to the negligible attenuation for the short path o
lengths involved, while the slight dependence in the downward direction is
due to the fact that the bottam reflection coefficient B is a decreasing
function of frequency [Fig. 7].

This second effect due to contributions from remote sources is
heavily dependent on the fact that the surface reflection coefficient ¥
is assumed to be equal to unity, If this is not the case, but ¥ differs
from unity by 6, (¥ = 1-6), then (7) leads to
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DPg(e,)
1[1-7(1- haR)J

Nyp(9) = (6, emall)  (2L)

sin O

DPg(9;)
sin o, [6+ hary]

Marsh et al, have derived a theoretical dependence for ¥ on several

(6)

parameters, arriving at

6 = 185 £1+5 (1,77 h)t*® sin o (26)

where f is the frequency in kcps and h is the rms wave helght, This
dependence is valid for small 01 and low sea state, However, it will have

little effect on Nup(go ), since Ol is very small vwhen Oo is near zero, and
consequently ¥ =~ 1 . A sample computer result is shown in Fig. 10, which
compares the values of Nup(oo) when ¥=1 and when ¥=1-6, It is seen
to cause a negligible reduction in ambient noise level.,

VII, Further Discussion of Results

The rather peculiar shape of the vertical noise distributions of
Figs., 10-18 merits some discussion, Examining Fig. 10 as an example, it
is seen that the noise level drops suddenly as Go passes beyond L° or 5°,
It is seen that this is true for both the 3(01) =1 and g(Ol) = gin 01
cases, so that the effect camnot be due to the falling off of the number
of noise elements involved (the inverse sin 01 effect). The effect
instead is that of attemuation, for as shown in the table of Rl and R2
accompanying Fig. 10 (which applies as well to Fig. 11), there is a
sudden jump in B1+ R, as @ reaches 5°, for a hydrophone at 100 ft.
This is due to a jump of the ray from a region 1 type to a region 2 type,
as shown in Fig. 6, The angle 00 = 5% is just sufficient to allow the
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ray to pass out of the shallow water chammel into a deep water path, This
causes all contributions but the first to the total noise level to travel
much greater distances to the hydrophone. Due to the attenuation of sound
in water, these now very remote contributions are much smaller, and the
total noise level is consequently reduced,

Beyond this sudden drop there is a gradual decay in the noise,
except in the case where g(ol) = gin 01 s where slight increases are
seen due to the fact that R._L+R2 again decreases alightly. The decay
increases as soon as the bottom is reached (which occurs at 12° in al1
curves of Figs. 10 and 11), for the bottom reflection cosfficient begins
to decrease from unity, Finally this levels out as seen from Fig, 7 and
thus the g(Ol) = sin 0, case is essentially constant while the g(Ol) =1
case decreases due to the inverse sin Ol effect,

The difference in hydrophone depths is seen to be unimportant except
at small values of Oo, since at small Oo the slightly increased path
length for larger hydrophone depths permits a small change in 01, and
Nup(oo) is very sensitive to 6, at small values of O, A% larger values
of OO the rays are geometrically very similar for different hyd-ophone
depths.

In the summer profile cases of Figs, 12 and 13 the g(Ol) = gin 01
case shows & constant noise level over a range of 90 near n/2. This is
due to the fact that Rl and Bl+ R2 are essentially constant over this
range, as a sketch of ray paths for such a profile will readily show,

Since the inverse sin 6, effect is cancelled in this case, the constancy of

1
the nolse is understandable, It ends as soon as the botitom is encountered

(at 8° for a hydrophone depth of 100 ft, and at 11° for a depth of 500 f£t).
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For still larger angles the features mentioned above again apply. The
summer cases also exhibit regions in which a null exists in the ambient
noise, These are considered in more detail below.

VIII. Conclusions ‘

It has been shown that an ambient noise model which assumes a
uniform surface distribution of independent noise source elements gives
rise to one of two very different noise distributions vs. vertical angle.
If the hydrophone lies at a depth where a uegative velocity gradient
exists, there will be no surface ambient noise received at angles near
the horizontal, although at slightly larger angles the nolse intensity
will rapidly jump to a high level, If the hydrophone lies in a region
of positive velocity gradient (and if the sound velocity at the hydrophone
is greater than that at the surface), then no shadow region exists and
the noise level grows rapidly as the vertical angle approaches the
horizontal. This peaking near Qo = 0 is due to two important features.
The first occurs because at small values of Oo a small solid angle at
the hydrophone covers a very large area of surface due only to the
geametry involved., The second arises from contributions to the noise .
generated far from the hydrophone and propagating to the hydrophone via
many surface bounces. This effect may be greatly reduced if the surface
reflection coefficient is heavily dependent on sea state., The first
effect may be counteracted partially if the surface noise elements are
directional, such that more power is transmitted at steep downward angles
than at very shallow angles to the surface.

The results in the winter profile cases shown above are seen to

depend only to a small extent on frequency and hydrophone depth, for low
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frequencies (100-1000 cps) and shallow depths (100-500 ft), Except for
the seasonal shifts in velocity profiles which cause radical changes in
the noise distribution, the distribution is rather insensitive to profile,
as seen by comparing the Bermuda and Iceland cases in each season.

The'superficially promising null in the noise at small values of Oo
during the summer months is not actually very helpful, since it is due to
sound channeling effects. Thus a target near the surface would also bte
hidden from the hydrophone, The exception to this would occur if the
submarine and hydrophone were both in the negative gradient region (below
D ode in Fie. 5) and at approximately the same depth., Then the submarine
signal would arrive at the hydrophone at an angle near zero, for which
there is a null in the surface ambient noise, This case possibly could
be taken advantage of, in order to combat such noise,

The results indicate that bottom bounce techniques might be employed
in order to take advantage of the greatly reduced ambient noise at angles
steeper than about 20°, The noise level at these angles can be as much
as 28 db below that at near horizontal angles,

The above results depend strongly on the assumed noise model. The
need for careful measurements of the vertical noise distribution near
the surface therefore appears to be indicated, By comparing such results
with the various cases given in Figs. 10-18, it should be possible to
make some judgments as to the functional form of g(Ol), the surface
reflection coefficient y, and indeed the validity of the basic model

concept, that of a uniform surface distribution of noise sources.
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Appendix The Ray Tracing Program

In order to evaluate Nup(Oo) and N, own(go ), the following quantities
must be computed.
01: the angle of intersection of the ray with the surface

e

bottom® the angle of intersection of the ray with the bottom

B.ls the ray path length from the hydrophone to the surface

R2= the ray path length from the hydrophone to the bottom

If the ray does not reach the bottom, then R, is the path length of

2
the ray from the hydrophone to its position of maximum depth, at which
point, of course, it is moving horizontally,

If the velocity profile is approximated by several straight line
segments, the ray path in the region of depth for each segment is uniquely
determined by the angle with which it enters the region, the velocity of

sound at the depth at which it enters, and the velocity gradient in the

region. 1
By Eq. (L) the angle at each depth is known as soon as O and Chyd )

are given, and the sound velocity at that depth is computed. Thus 01 LA

and °bottom (when applicable) can be found without any ray tracing as such, tay
The program used begins at the surface, and taking each linear L

segment, subdivides the corresponding depth interval into a sufficient

number of subintervals, The c¢riterion used was that the ray angle should

not change by more than a specified fraction of a degree over the subinterval.
A change of one degree was found tolerable. Thus in this subinterval the

ray path is essentially straight, and if it is directed at an angle O:I.

with respect to the horizontal, the path length in the subinterval is
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di/sin Oi s where di is the change in depth in the subinterval, Thus R‘L

is merely the sum of all these contritutions, until the depth of the

hydrophone is reached, This number is stored and then the computation

resumes downward to find R2. When either the bottom or an angle Oi

is reached, the computation is terminated.
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Summary

The detection of s single sonar pulsce by means of = correlation detcctor
is anal zed in the zbsence of Doppler shift due to transmitter, target, or
scatterer motion. The returned signal is assumed to be ~ deleyed replica of
the trensmitted signnl. Noise fields consisting primarily of volume rever-
beretion, surfoce reverberation, and cmbicnt noise ere considercd separately.
The reverberation noise is assumed to be generated by independently located,
Poisson distributed scatterers, dispersed throughout the illuminated volume
{(volume reverbepztion) or neer the illuminated surface {surface reverberation).
The transmitted signel is assumed to be o pulse of sinusoidzl cerricr with
or without superimposcd lincar frequency modulation. The following rosults
ar. obtained:

1) The bendwidth of the transmitted signal imposcs nn effective renge
gate on output noise arising from the intermodulation products of
sigr-.1 with reverberation., The width of this gote is of the order
of the velocity of sound divided by the bandwidth of the signal.

( this ratio may be regarded os the corrclstion distance in the
water of the transmitted signal). Only scatterers whose range differs
from thot of the target by no more than the gate width contribute to
this type of output ncisc (which is deminant under high signal to
noise conditions).

2) Output noisc consisting of the intermodulation products of reverberation
with reverberction is coatributed by ell scatterers illuminsated
simulencously with the target. Contributing scattercrs thercfore
lie within a renge gate deteermined by the pulse durotion rather
thon the {possibly much shorter) signrl corrclation time. However,

the two members of cach contributing pair must be separated form each

D-i



3)

5)

other by n renge difference no grenter than the "renge gate'" defined
in 1). Intermodulation of reverberation yith reveration is the dominant
noiscv at low input signal to reverberation ratios. Except for the
phencmenon discussed in 3), there is no engular discrimination

against either type of reverberation noise =aside from the obvious
effects of transmitter and receiver beam patterns.

A special case of 2) is output noise duc to the intcrmodulation of

the returns from a particular scatterer to the two receivers. This
type of noise is important only when one or a few strong scatterers
(false targets) contribﬂte a significant fraction of the total
reverberation. Fnise target returns are subject to angular dis-
criminetion ,being sherply attenuated if they are scperated from

the target by more than a certain angle. This angle defines the
minimum engular resolution of which the detector is capable. For

a broadside target it is the arc sine of the ratio of the signal
correlation distance to the spacing between receivers. The resolution
is best in the broedside direction and poorest in the endfire
direction.

In the absence of a target the average detector output is zero except
for a transmitter-receiver combination with very narrow beam patterns
trained very close to the axis of the receiving ammy.In the latter
case a non-z2ro average output may result from the inability of

the detector to resolve different scatterer groups within the illuminste
ares,

In the absecnce of strong scatterers (false targets) and for beams
trained far enough from the array axis so-that the resolution

problem mentioned in 4) does not arise, the reverberetion may be
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regarled as & Gaussian poise process. For a fixed input signal to noise

ratio, there is then no difference in performence between a detector
opereting in a noise field consisting primarily of reverberation and
a similer detector operating in an ambient noéise field with the

same power spectrum. If the ambient noise field is broed-band

but is filtered so that its spectrum comes close to matching that

of the signal, there is still no important diffcrence between
dctector performance in reverberation limited and ambicnt noise
limited environments (for fixed input signel to noise ratio). One
must keep in mind, however, that the effective input signal to noise
retio tends to vary inversely with the signal bendwidth for ambient
noise, whereas it is independent of the signal bandwidth for re-
verberation. Thus meximum output signal to noise ratio is generally
achieved by the use of broedband signals if the primary problem is
reverberation and by the use of narrowband signels if the primary
problem is ambient noise. In the former case one takes advantage

of the range gating effect produced by short signal correlation
times, in the leatter case one relies on noise reduction through

the use of n®rrow filters matched to the signal spectrum.

Under the conditions stated in 5) thé output signal to noise

ratio veries as the square of the input signal to noise ratio for
small input signal to noise ratios and as the first power of the
input signal to noise ratico for large input signal to noise ratios.
Thus the correlation detector operates much like a coherent dectector
for large input signesl to noise ratios but more like en imcohcrent
detector for smell input signal to noise ratios. The output signal

to noise ratio of a true coherent detector (correlating the output
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8)

of one receiver with a delayed replica of the tranemitted signal)

is precisely twice that of the correlation detector in the limit of (%
high input signal to noise ratio. For one set of reasonable parameter

values, the correlation detector requires an input signal to noise ratio

8 db higher than that of the coherent detector in order to achieve an

output signal to noise ratio of 6 db.

The primary difference between surface and volume reverberation is the

time dependence of the former, caused by the fact that surface rever-

beration 1s a problem only when elements of the surface zre illuminated
simultaneously with the target. This leads to limitations on desirable

pulse length which are not present in the case of volume reverberation,

Reverberation power varies with range: with the inverse second power of

range for volume reverberation and the inverse third power of range

for surface reverberation. The input signal power varies with the inverse

fourth power of range. Hence, for small input sigral to noise ratios, z
the output signal to noise ratio varies as the inverse fourth power

of range for volume reverberation and the inverse second power of range
for surface reverberation. When ambient noise dominates, the output
signal to noise ratio varies with the inverse eighth power of range.
Under conditions of high input signal to noise ratio, the output signal
to noise ratio varies with the inverse second power of range for volume
reverberation, with the 1inverse first power of range for surface

reverberation and with the inverse fourth power of range for ambient noise.
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I. Detection in a Reverberation Limited Enviromnment

This report is concerned with the detection of an active sonar signal
in a noise environment that may be dominated either by reverberation or by
ambient noise. The postulated signal processipg scheme is outlined in Figure 1.
A sonar pulse produced by a transmitter with known beam pattern is reflected

by the target and received at two locations, labelled receiver a and receiver b

ffefFiEr_ETl_ o e, ) receiver b

transmitter

d >

Vb\i_ldelay
- lﬂ?lti lier Now pass outent
atiplieri5i  filter| "z

Figure 1

respectively. Whether eech of these receivers consists of one hydrophone

or of a group of hydrophones is immaeterial to the analysis except for the
effect om the signal strength received from any given direction. As long as
the two receivers are similar and the target is relatively remote (r°>>>d), any

beam-forming effects of the receiver can clearly be lumped with those of the




transmitter, Jhe ontput. of ene receiver is delayed by an amount tr,
~houn SO a8 to bring the two target returns into alignment (steering).
It is then multiplied by the output of the second receiver and the produch
¥ is smoothed by means of a low pass filter.1 Reverberation is assumed
to be generated by a series of scatterers randomly distrituted in volume
and at the surface, The scatterers, as wsll as the source and target,
are assumed to be at rest.2

The transmitted signal is taken as a linearly frequency moiulated

pulse with Gaussian envelope, Thus

2
Transmitted signal = exp[-ELé]cos(wot +

Op

(1)

iR
ct
g

In cases of practical interest the pulse width Op> maximum frequency

deviation in the pulse KoT,and mean carrier frequeacy .Bsatisfy the

inequalities

QiR

<< Ko, << wo (2)

In a reverberstion dominated environment the output V_ of receiver a

lAlternatively or2 might use transducers a and b for transmission as
well as reception, With proper delays in transmitted and received signals
the signal component of the output would be identical with that obtained
from the configuration of Fig. 1. The formal expression for the reverberation
noise would be more cumhcrsome, since for most scatterers the round trip
times to one receiver from the two sources would be different, It is
not felt that the inclusion of this added complexity would yield significant
additional insight into the detection process,

2For the relatively wideband signals considered in much of this
report, the Doppler shifts due to scatterer motion (even due to target
metion) should be quite small compared with the signal bandwidth,
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can now be written as follows:

(t-t_)°
v, (t) = ;AE exp| - _o_ra- os[wo(t-ta) +-§- (t=t, )2]
a T
a (t-t.)2
+ Z —=5 exp 21 cos[wo(t—t.i) + g (t-ti)a] (3)
5 4 Op
r +r

2] a

5 is the round trip time from the

In Equation (3) v, =
transmitter via the target to receiver 3}‘ c is the velocity of sound
in water, ti is the round trip time from the transmitter to scatterer
i and back to receiver a. The constant A depends on the scattering
cross-section of the target and on the amount of radiation received by
the target, i.e, on the beam parameters of the transmitter., In similar
fashion, a; depends on the scattering cross-sectiun of the ith scatterer
and on the transmitter beam parameters, The dependence of the signal
and noise compenents of Va(t) on l/ta2 and 1/ti2 respectively reflects
the usual spherical spreading loss and results in a non-stationarity of
the reverberation noise.

In completely analogous fashion the output Vb of receiver b assumes

the form:
2
(=t ) K

A b & 2
Vb(t) = = expl- 3 cos[wo(t-tb)-rz(t-tb) ]

b . %7

a (-1, )° : .
+ z 5112- exp | - ——LOTZ cos[mc‘(t-Tj) t3 (u—Tj) ] (L)
J

Here tb and T, are the signal round trip times from the transmitter to

2
1Strictly speaking, the first term is proportional to ¢ /(rora). With
r =r, this becomes approximately hlta
D-3




receiver b via the target and scatterer j respectively. Vb(t) is delayed
by t‘r seconds and multiplied by Va(t) te yield y(t). After some algebraic

simplification one obtains:

2
5 A )2 . (t o bttty
A a b r 2
1

o) = =g e — = | %,
a o7 I
t,+t_+t
. . b 'r "a
cos [»c(tb+tr-ta) + K(tb+tr-ta)(t - —T——)]
t +T 4+t
(t,-T.-t ) t- —-i—
= exp| -
20T o0 /g
T +t +t ]
r a
+ cos [wo('rjmr-ta) + K(Tj+tr-ta)(t - —12—— )J
2
t.+t .+t
A ! (byty-t.) (t = "i"zl'l"
+2+22t2ex~p- 2«§ i 022
v i ‘i T T /

tb+tr+ti
* cos [mo(tb+tr-ti) + K(tb+tr-ti)(t - __E_)]

%, °T 2m /2

t_+t
. cus['ﬂ (T -ty ) K(T b -ty e - -i—) (5)1

If the weighting function of the low pass filter is w(t), iis

output z(t) iz given by

ISirwsoidal terms in 24» t have been discarded since ther will be
filtered out by the low pass °filter in any case,
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Z(t)=fdpﬂ(p)y(t-p)

o]

(6)

For computational canvenience the weighting function will be shesen as

. (4=t)?
e -

w(t) =

This correspcnds te the frequency function

G(w) = fw(t) exp [-jut] dt = exp{—

-0

|

2

o.
F
_E-u?

As long as the time delay tD satisfies tD >> Ops the filter is

approximately rcalizable,

(T

J exp[- Jutp| (8)

Substituting Equatiens (5) and (7) intov Equation (6) ene obtains

after extensive algebraic manipulations:

t +t, +t
2 o (bt ~t_)? (t.--—-—-"‘ br—tj %0
A c a b r 2
z(t)--—ﬂ-o—p‘-exp-———z—-exp- 2 2
2ta tb ZO'T OF > C.T /2
ccz tr+tr+t
s cos f @ (byrtt,) 4K =5 (Bat -t )b - — ) t'D)
c
F
2 ta+T +t 2 2 2
t =T =t ) t - -t K6~
A %% T @ ( a jr ( 2 1) [
T 2 N e ) O
2t ¢ F T 20 0.+ 6.°/2
a 373 F T
2
Oc T.+tr+‘ba
*+ cos wo(Tj+tr-ta) + K ;—2 (Tj+tr-ta)(t - —L2— - tD)
F

e —



¢ cos @ (T +t -ti)

where

2
t +t_+b
b "r i
2 = '&D)
F
t,+T 4+t 2
2 't - 1 ! r _ t‘_)} K?.o_c2
exp|= ) ) = lexp|-~- 'E—'(Tjit =)
O + op /2
ac2 T_+15r+ti
= (T jot,mty )b - == ty) (9)

2 2
op /2

Op + Orp /2

(10)

Tquation (9) indicates that the delay t, necessery to maximize

the signal component of z(t) is

2
©(t) = —7— 5 |-
Zta tb

With this adjustment of delay

o

F

a
Ty

[_(

t -T

2qr

)

3

tr = ta-t

2
(bt,~t ) ]

op + op /2

[, s -"z—)

% £ oy /2

(11)
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2

| o T, =t
. cos{(TJ'tb)[“B+ K ;9? (t-ta-tD- _15_9 )]}
F
t.+t 2
2 i "a 2 2
A % 8y (ti'ta) (t-tp- o ) ] Ko, 2
Yy on ) T P — - ——— = t, -t
th CFE;t‘iz 20y o Op * Op /2 -’exp T—(i a)

oc2 ti+ta

. cos{(ta-ti)[moﬂf =5 (te=tp- _2_)]}
[of
F

t,+T +t_=t 2
0 a.a, (b )=(T =t )]2 (b o 2gl2B _ g5
+ i oxp| - [ i “a 3 °D e - 2
ZF; Zj £ fr f 20, ® o boy /2
[ k% ° 2
’ 9”[' T[(ti't‘a)'(Tj'tb)] ]
J

. t.+T +t_=t

: cos{[(ti-ta)-(Tj-tb)] [0, K :% (41 ab. tn)]} (12)
F

The signal component of 2(t) clearly peaks at t = t+ tp. The statistical
properties of the random variable z(ta+ tp) are therefore of primary importance
in any discussion of detector performance.1 The general expression for

z(ta+ tD) is from Equation (12)

A2 °c
Z(ta'*t ) = -——2—2 a-_-
D 2t ¢, °F

1The statement that the output is observed at time ta+tD implies selection
of the proper range cell, just as the choice tr= ta-tb implies selection of
the proper bearing cell., If bearing and range are not known a priori, one
must clearly examine all possible cells,
D-7




2 2 k2o 2 2
% ? (b=t ) (b;-t_) £ i
2 O:Z%em[.'i—;] exp[- —}'2—82' L [ —r (t;-t ?}os t-tl)[mﬂ(j a l_

—T

O —a (tb’T-/]z (ﬁ‘%&ﬁ;— 2 (t T )] (T =t ) K ___J_
L . - T— " coS - w +
<, i L —-g P h(oF +cT/2)]e [ o3 J j e [ F ]

. h(cF +oT/2)

% aa -Eti-ta )-(Tj-tb)]z} { [(t -t (T -t )]
°inzj tiEsz exp{ 20,° Wog o+ op°/2) }
Ko g T -t
. exp{ —r[(t =t )~(T -t )] }cos{ [(t -t )- (Tj-tb)][ -x- i b”}

(13)
For ease in later computations it will be convenient to distinguish
between two cases:
A) The bandwidth of the transmitted signal is determiied primarily
by the frequency modulation (KoT>>l/ o,r)
B) The bandwidth of the transmitted signal is determined by the pulse
duration (no frequency modulation, K = 0),

In case A) Zquation (13) reduces to the expression

A2 %
z(t +t_ ) = —
a D’ 52 2op
a’'db
- a 20 2 _ 5 2
A c\NJ K ¢ -
i z > expL T (tb-Tj) cos (Tj-tb) w ¥ 5 = (tb Tj)]
2t © F oot j o
a 373 F
o a r K2c e o] o g
A c i K "¢
v 0 vy B e LR ¥ Jeost (ot [ 3 =55 oty )]
2tb F& ti op

2 2 2

R a,a [( ti-ta (T j’tb )]
SR _TJ'E (t-t)(T-t)]
2°F§; thi T, I H 2 [ W oy /2)
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2

. cos {[(ti-ta )-(T J-tb)] [0, '}25;92 (b=t 4y, )]} (14)
F

The equivalent expression for case B) is

2
2 g g a (t,-T.)
A c A c b
z2(t +t. ) = -t — exp[- -——-—%—] cos (T.-t )w
a b Ztaztbz Op 2t,f °F§1Tj§ 20, JRbile
2
LA %y (6;=t,)
i ;2— ?.; ;—2 exp[— —E;—é— cos (ti-ta)c‘)o
b i~ e
2
o a,a, [(t <t _)=(T -t )] [(t.-t )+(T .=t )]
+ . C i expl- 1 a J b expl - i a j b
TG_Fngtiszé 20, o+ ag/z)
+ cos{ [(t; =t )~(T j-tb)]wo (15)
2 2 2
On (Op + an /2)
where o, = Uiy 5 4 5 (16)

% * o
The fird term in each of the two equations[(lh) and (15)]18 the signal
component, the next two terms are due to the intermodulation of signal from
one receiver and reverberation from the other, while the last term results
from the intermodulation of the reverberation components.,

Several qualitative conclusions concerning detector performance can be

drawn immediately from inspection of Equations (1kL) and (15 ):

1) If the signal is strong compared with the reverberation, the noise
consists primarily of intermodulation products of signal with
reverberation, and the last noise term can be omitted,

2) If the signal is weak compared to the reverberation, the dominant
noise term is the last,

3) A coherent detector cross-correlates the output as a single receiver

D-9




against a properly delayed replica of the transmitted signal. Its
output therefore consists of the first two terms of Equation (1k)

or (15). It follows that the instrumentation of Figure 1 behaves
essentially as a coherent detector when the signal to noise ratio

is high.l When the signael tv noise ratio is low, its performance

is quite different and will be seen later to approximate more nearly
that of an incoherent (pover) detector.

L) The intermodulation products of signal and reverberation are ef-
fectively range gated. In Equation (1k4) only scatterers located at
a range difiering from that of the target by no more than aboutig—
contribute to the reverbersiof For Ko, = 2mx50 (about 100 cps ‘
transmitted bandwidth) this corresponds to a renge variation of
about 16 feet. 1In Equation (15) scatterers may deviate in range
from the targe. by roughlyvékoem With a transmitted pulse of
0.5 sec duration, this corresponds to a range variation of about
145 feet.

S) A soreshat more complicated range ggting effect is present in the
terms resulting from intermodulastion of reverberation with reverber-
ation. According to Equation (14) significant contributions to
the last term arise only when the following two inequalities are

satisfied.

lIt will be shown later that the cross-correlation between the second
and third terms of Equations (14) and (15) is small under most conditions of
practical interest. Hence, under conditions of high signal to noise ratio,
the instrumentation cf Figure 1 may be replaced conceptually by a coherent de-
tector operating in & background of reververation with twice the actual power.

2Note that t, 1s round trip time to scatterer i. Hence a range increment
of 8 feet changes ti by 2s seconds.
c
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b

d o =

|(ti-ta) - (TJ—tb)I < k%-c- (17)
2’!
[(g-t,) + (1,-8)] < 2VoPe - (18)

The spatial region to whicii these relations restrict the location of

contributing scatterec peairs is indicated by the crosshatched region of

c
S 5T-ty)

.

B TR
e\/0p *9q 223\\\\

V2e

s g s

{/- < c\lo 2+u EFE
H P FOOO

7 us £ s
o2 ‘\\\ o
-C \[/aF *o5, /2 5 5 I{ti-tai

™

n

Figure 2

Figure 2. Note that the constraint is one on range only. Scatterer pairs

having the proper range relation contribute reverberation regardless of their

relative bearing.l The origin of Figure 2 denotes a scattemrpair such that

scattemri is located at the same range as the target relative to receiver a

while scatterer J is located at the same range as the target relative to

-

receiver b. The total range variation allowed by the crosshatched area is

1

a.i and A.
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clearly of the order of'J;; c 0F2+0T2/2 . However eny given intermodulating
pair can have a range differential no greater than c/Koc.
In the absence of frequency modulation [Equation (15)], the equivalent

of Equations (17) and (18) is

[(t5-tg) = (Ty=t,)| < V2oy (19)
and |(b=t,) + (Ty=t,)| <2 \/0F2+0T2/2i' (20)

The region of contributing scatterer pairs is shown in Figure 3.

Figure

6) An interesting special case of 5) [intermodulation of reverberation
with reverberation] arises when i=}). This means that the returns from a
particular scatterer to recelvers g and b are intermodulating with each other.
If a total of N scatterers is illuminated, the number of terms of this form
is N whereas the number of modulation products of different scatterers is

NQ-N. For large N the latter predominate and the former are of practicel
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interest only if the return from one or more scatterers is particularly large.
In other words, the case i=) is essentially that of false targets. PRor isj
Equation (17) can now be decomposed into the two expressions

2

t =T < K—oc-+ (t.-tb) (21)
T, = t, ¢ oo—- (t -t.) (22)
i i Koc a b

Similarly Equation (18) cen be rewritten as follows

[ 2,2,

ti+Ti<(ta+tb)+2 op 40, /2 (23)

£, + T, > (t +t.) - 2,/0.%40,2/2 (24)
1 v Ty o't Vo *op

ety is the distance from transmitter to receiver a via the 1th scatterer
and c'r1 is the ¢‘stance fram transmitter to receiver b via scatterer i.
It follows that Equations (21) and (22) define a pair of hyperbolas and
Equations (23) and (24) a pair of ellipses between which false targets
must lie if they are to be a significant source of confusion. These

constraints on false target locations are illustrated in Figure 4.

2¢ ,
e(t,-T, )=== + (¢t -t )c
i1 Kac a }

2
~ Ko
[




Figure YA is based on the assumption t =ty (target broudside), while

2
>—
b ch

broadside). In each case the region from which false target returns may

Figure UB shows the case t, -t (target significantly clockwise from
originate (crosshatched area) is a pair of small curvilineesr squares
centered at the target location. Thus, as far as false targets are concerned,
the postulated instrumentation introduces not only a range gating effect

but also a gate in azimuth and elevation.l In practice the situation is
actually likely to be simpler than suggested by Figure 4, because the target
is almost certain to be at a range which is large compared with the spacing
between receivers a2 and b. In that case the ellipses and hyperbolas
degenerate into circles and radial straight lines respectively, as indicated
in Figure 5. It is now a simple matter of analytic geometry to determine
the angular spread (sg) which might
contribute a false target return. With

8 true target broadside (g=0) one obtains

[ -1 c/(Koc)
2 sin 3 for Ko € d
AB = ¢
n for == > d
c (Koc) KUc (25)
Figure 5 1f = = <<l

i.e. if the correlation distance of the transmitted signal in the water

is much smaller than the spacing between receivers, Equation (25) reduces to

. ¢/(Xg,)
48 = 23— radians (26)

With c/l(‘Jc = 16 feet (as postulated before) and d = 160 feet, this leads

to an effective aperture g = 0.2 radians. Another way of stating this

l'I'he significant region of false target locations in 3 dimensional
space is, of course, the solid of revolution generated by rotating the
crosshatched areas about the axis (a,b).
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result is that the postulated instrumentation is capable (regardless of beam
pattern considerations) of resolving two targets separated in angle by
about 0.1 radians. An expression equivalent to Equation (25) for B¥0

¢/Ko
d

c/Kac

d

assumes the form 1

€ . sin 4 (27)

08 = sin-l' + sin s)+ sin”

where each arc sine is interpreted as n/2 when its argument exceeds unity.

JI. Probability Density of Scatterer Location

The detector output z(taftb) a8 described by Equations (1h4) or (15)
is a random variable whose properties are dependent on scatterer location
to the extent that scatterer position influences ti and TJ. In order to
describe the statistical properties of z(taftb) it is therefore necessary
to postulate a statistical model of scatterer distribution and to express
the properties of t1 and TJ in terms of appropriete paramentersof this model.
There are two major sources of reverberation
1) Scatterering centers distributed throughcut the volume of water
traversed by the signal (volume reverberation).
2) Scatterering centers near the ocean surface or bottom (surface or
bottom reverberation).
For the pumposes of this report the simplest possible assumptions will
be made concerning the distribution of each type of scatterer.

1) Volume reverberation. Consider a large volume V of ocean

surrounding the source and including all of(but encompassing much more than)

h scatterer will

the volume illumineted by the source. The locetion of the it
be taken as a random variable uniformly distributed over V and independent ?
of the location of any other scatterer. Thus the number N of scatterers in

V has a Poisson distribution. Each scatterer is assumed to be stationary

while 1lluminated by the transmitted pulse. The scatterer distribution

D-15




X

g B
il A<
/ *-ur-"} - ///
i A is described most simply in terms of a
F ~ ith
/F;:atf_greﬂ rectangular coordinate system. Consider
; / z such a system set up with origin at
Ta“:a,/ri 1" i
I"H il receiver a and receiver b located on
de B vy

g the y axis as shown in Figure 6. The
a 2 ¥
/,7 probability that the ith scatterer lies

\ X
1 . )
/ (\’ xi2*_(},i_d)2 in [(xg,¥;,2,),(x 4dx,y, +dy,z2,+dz)]

Fizure 6 is clearly (1/Vdxdydz). Transforming
this result into a spherical coordinate system centered at receiver a as

indicated in Figure 6, one obtains

Pr {ith scatterer in (ri,01,¢i),(ri+dr,9i+d0,¢i+d¢)} = %fie§in0idrd0d?28)
Hence the probability density of the ith scatterer location in spherical
coordinates is

% rizsinoi inV
p(ri’gi¢i) i 0 elsewhere (29)

If, as a matter of computational convenience (and without influencing the
results in any significant way), one assumes that the transmitter is located

close to receiver a jthen

s 2
S =5 (30)
Hence the Joint probability density of ti,oi and o5 is

c3 2
=t.“sin o, in¥X
&v sin
p(t;.0,.4;) = * * (31)
0 elsevwhere

vhere i is the space equivalent of V under the transformation (30).

2) Surface reverberation. The scatterers are now distributed in the
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immediate vicinity of a plane (the average surface or bottom) which will

be taken as ‘parallel to the xy plane of Figure 6.

If Q is an area on the

surface much larger than that illuminated by the beam and if one assumes

uniform and independent distribution of scatterers in the x and y directions

one can write

.th . =1 1 1
Pr (i scatterers in (xi,yi,zi),(xi+dxi,yi+dyi,zi+dzi)} = Qv,__._,exp 5

21A

. dxidyidzi

(zi—D)2}

D is the depth of the array relative to the average surface and 4 is the

vertical rms spread of scatterer locations.

2z is of course an arbitrary model.

used to introduce some of the effects of surface roughness.

The Gaussian distribution in

Variations in the varameter 4 can be

Since scatterer

location enters the expression for the received signal only via the time

delays ti and TJ’ it is clear that vertical spreads A small ccmpared with

the effective illuminated area have little effect on the return sienal.

The z distribution then degenerates effectively into a delta function at

z=D. This simplification will be introduced at an appropriate point later

in the analysis., It should also be pointed out that the primitive model

of reverberation used in this report ignores the time dependence of scatterer

locations.

Transformation into spherical coordinates converts Equation (32) into

the expression
.

1
_.::‘_ expl_
_d ¥y2na
p(ri’oi’¢i) - |-

24

0

2

[ (ricosOi-D)Z]

r, sino,
i i

in Q

elsevhere

which is the equivalent of Equation (29) for surface reverberation.

the transformation (30) yields

D-17
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c3 1 i~ % ticosOi-D)Qj -
B-Q- == e&Xp| - =% t. sing@, in ¥
_ % yens 28 i =
(\ 0 elsewhere

where z'is the space equivalent to Q under the transformation (30).
The Jjoint distribution of ti’oi’ and ¢i is sufficient for the computation
of all reverberation statistics because the random variable Ti can be

expressed in terms of ti’oi’ and N by simple geometrical reasoning. From

Figure 6 5 5
; _ . 2dy, -d dy.-a°/2
N - S i o i
Ry '\/"i 2,74y -a)" =T x; ey Teey 2 2 2 %i" Tr (35)
xi +yi +zi 1

where use has been made of the assumption d<<ri. In view of the fact that
the only scatterers contributing to the reverberation are located at ap-
proximately the same range as the target, this assumption should not introduce
any significant error.

Omitting d2/(2ri) as megligible compared with r, and transforming
to spherical coordinates, one obtains

R, = r, +d sin®, sing, (36)
i i i i

The travel time of sound from the i*® scatterer to receivers a and b
is ri/c and Ri/c respectively. Thus, assuming the sourcz to be located near
receiver a

5in@, sing, (37

III. Average Detector Qutput

The DC cutput of the detector is the expected value of Equations (1)

or (15). 1In each case it consists of a signal component

A c
E{z(t _+t )} _. = — = (38)
a D"’l'signal ot 2t 2 Op
a b
D-18
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and a noise component. The second and third terms of Equations (14) and (15)
make no significant contributions to the average, tecause w0>>Kcz>—31'-

e
so that one can invoke the Riemann-Lebesgue lemma. For the same reason

all terms of the double sum for which i#j can be ignored. Thus for case

A) [vandwidth determined by frequency modulation]

% \" & - K2°c2 2
E{z(t'e."'tD)}lnoise = EFLE £ enie exp g - [(t5-t,)=(T;-t)]
1 U T .
[(t,-t_)+(T,~t, )} o 2
exp(- 11;(& 5 12 b cos [(ti-ta)-(Ti-tb)][wo% LE (ta-ti+tb-Ti-) ]}
Op *oqp ) O (3

'1‘i is now expressed in terms of ti’ Oi' and ¢i by use of Equation (37).

Similarly tb can be written as

: d ; M
ty = t, + < sind_ sing, (Lo)

vhere 00 end °o measure target bearing and elevation respectively. For
volume reverberation the relevant probability distribution is given by
Equation (31). Substituting Equations (31), (37), and (40) into Equation
(39) one obtains an expression which must be integrated over the variables

ti’°i’ and O,. The result of the t, integration is (after considerable

i i
algebraic manipulation)

®© o 2 9 3 a 2
= 2.°7T e\ ¢ i

J s(tgrtp)l  p(t;.0;,0,)at, =/n(op"+—5-) 2o, LBV 1™ T2
a

-0 noise i
2K20T2d2 du, -
exp -(smOosin%-sinOimn@i) —-a-c—g—- cos | —= (sinOo,siMo-smGism%)

k1)t

1The second exponential in Equation (39) differs significantly from zero
only over an interval roughly equal to the pulse length, ﬁentﬁred at 2t_. Hence
the limit of integration can be taken as (-a»,00) and a,“/T,” can be replaced
2z T
by ay /ta without introducing appreciable error.
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Before the °i and Oi integrations can be performed, it is necessary
to recall that the coefficient ay determines the power returned from the
ith scatterer. a; is therefore dependent on the beam pattern of the trans-

mitter and receiver. This relationship is now made explicit by the following

expression

2. ‘_’_ijexplr_(fi_'fg)z exp i (45-¢5)° (u2)1

i smOi | B 2 : B 2

0 LA ¢

B0 and B¢ measure the pattern width in the © and ¢ direction respectively
while b, is the scattering eross-section of the 1" scatterer. Equation (h2)
assumes that the beam pattern is centered at the target.2

If the beam dimer.sions B0 and B¢ are small compared to one radian, one
can approximate the sinusoidal functions in Equation (41) by the linear
term of the-Taylor Series expansion.
sinOisin¢i Y sinOosin¢o + cosOosin¢o(0i-Oo) + sinOocoa¢°(¢i-¢o) 8 (43)

The averaging operation in 8 extends over (0,m) while that in ¢, covers a
full two radians. The narrow beam patterns already postulated enable one
to extend the limits of integration to (-o0, 00) except for values of 9
near 0 and n (straight up and straight down). Since these particular
directions are of little practical interest, the complications arising near

Og=0 or m will be ignored.

1The factor 8in®, in the denominator reflects the fact that the ¢
dimension of a fixed €lement of area varies inversely with sin@. Hence
for large B, and B, Equation (42) corresponds to uniform illumination on
any sphere gbout the transmitter.

2If one thinks of a transmitter operating under an average powcr
constraint, it might be reasonable to postulate that the total radiated
power is fixed so that the target power would vary inversely as BOB 5
Such an assumption is easily incorporated into the analysis by div1dfng the
right side of Equation (A2) by B_B,. As it stands Equation (42) implies that
the power returned from the target is independent of Bg and Bd'
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The actual integrations are tedious but quite straightforward. The

result, after extensive algebraic simplification, is

00 L L 2 °T2 3 c3 N b 2
Idtifdgij“i 2(trtp)l plt;.0,,0;) =|nlop™ ) 20, BV Zt_z
-00 o -m noise i=1l"a

B, f a2 2 ] "
exp
Ezc 2dzo2 l be? k%0, 2a%° j

l+ T2
8c
2 2.2 2 2 2. .2
where p° = B° sin"@_cos“¢  + B "cos“@ sin“¢ (45)

Equation (4k4) contains two random variables, the scatterer cross section bie
and N, the number of scatterers in the volume V. Designating the average
scatterer cross section as <b2> and postulating an average of K scatterers

per unit volume the expected value of the detector output noise becomes finally

E{z(t +t )}

d2m02 2
PeXPY - T2 53753 (16)
he K O dp
1+ >
8c
2 2 2 2
If (Ko Op & )/(80 ) >> 1 the argument of the exponential function
2 i carrier frequen
becoames - requency The magnitude of this ratio

o 2 -
K2c 2 transmitted bandwidth °
T

is almost certain to be large compared to unity so that the DC output due

to noise is negligible. If (Kaonepz)/(Bca) << 1 the argument of the
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exponential becomes - 5
he

. For d=100 ft., wg = 2% x 3500 rad/sec, and

”
¢ = 5000 ft/sec, d'“woa/hc2 = (TOn)2. Hence the exvonential is of an order

no larger than e"lo for 92 3 0.0002. Small values of p occur near 0°=0,

6,0, and O = :_g-, %" 1-%" Only the latter combination is of nractical

interest. Postulating B°=B =0.1 and wvorkinms with the extreme case, Oo— 5 R
onc concludes that. the average noise output is very small unless the system

is trained on a tarrct no more than 8° from the cndfire direction. The
appearance of a DC component of noise near the endfirc direction is rensonable,
for in theat condition the difference in sisnal travel time to the two receivers
is very ncarly the same for any point in the illuminatcd volumc. In other
words, because of poor directivity near cndfire, the detector is unable to
distinguish between a point tarpget and a volumetric distribution of scattcerers.,
In effect it reports the accumulated return from all thosc scatterers which

it is unablc to resolve as an equivalent tarnet.l

The derivation of the averase noise output in the abscnce of frequency

modulation (casc B) follows the same pattern ond lcads to the rcsult

\
]
“\nlea 2+o 2/2) o, ch nB_B P ® o2 1
E(z(t_+t )}| wV=E L e oy o | Y%
o™ N AR
noise a 1+_éL.2. 1.._,_&.._
2¢ Op Ec cT ;
(b7)

then (d202)/(2c Orp ) << 1 the exponent reduces to -(d2 : 2)/(hc ) as

1Caution is in order in any quantitative use of Fquation (46) very close
to the endfire direction, for thc use of only linear terms in Fquution (43)

becomes inappropriate for O and ¢ within B° and B¢ of (0 = ; » 6= )

Hipgher order terms must be included if quantitatively accurate results are
desired.
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under the equivalent approximation on Equation (46) so that the previous
comments ooncerning DC noise output near the endfire condition remain ap-
plicable.

Equivalent results for surface reverberation could be obtained by using
the distribution of Equation (34) in place of Equation (31). The computation
is quite tedious and was Jjudged to be of limited interest in view of the
anticipated negligible value in all but the extreme endfire directionm.

IV. Detector Output Variance

In order to evaluate the performance of the detector, it is necessary
to compute the output fluctuation as well as the average output. Since the
signal component of Equations (1l4) and (15) is a constant, the fluctuation is
entirely due to the noise. For the frequency modulated case [case (A)] one

uvbtains from Equation (1k4)

2 LA Kzo E )
zz(tann)l = 2 ZZ—JJ— = —,;°— [(t,- ) +(tb J.)‘?]
noise a O J 3 J J'
o} 2 g 2
+ cond (Ty-t,) logty =I5 (£,-T,)1p cos( (T, ) Tu +5 =5 (t,-7,,)]
Op Op )
2 \
2o a8 1(20
A° "¢ i74
<+ — ————t— -T— [(t -t ) "’(t "t ) ]
bt 2 an% 1" tizti'z t

" 0)

~
n

2
(6 -t w2 (5 —t.)] (6 ~t,,) o +5—(t-tv”
° COSET =Yy LUy 272 Ty cO8, A= 2 "2 i

F Op P,

F ii'J S SR (L et
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(t1+TJ-t -t )2+(ti,+'r =tmty, ) { 02
neiDl= -l [&rt)=(T-t) ) (uts —S(t-tst-T,)
= o, Zoor2r2 ) brid- ez | sy
O 2
* CO8 [(ti'-ta)'(T -t )][0) +- (t "tiv'.'tb"TJl)]
[+
1-‘

Koo 2
QZZ 252 P -5 [(tb-TJ)2+(ti-ta)2]

[}
abFiJi,j )

2 2
-cos (T -t )[w éo (t -'r )]) cos (t -t )[w +-2-° (¢, -tiﬂ
°F °F

o2
—ci ZZ L XPE ST {[(ti-t&)-('r.j-tb)]2 =(ty=Ty1)
2 i J J'

*a J
(t,+T,-t -tb) x % 2
rexpl- Sl b leon{[(t;-t,)-(T,-t ) lugss <5 (-t -Tyvty)]
b(op +op /2) °F

62

K "¢

«co8 (TJ.-tb)[%*-e-d t,- J.)]
F

iJi'iJi'

F
("“T-t-t)a ! cJ2
1 Mo teof2) | Lity-t)-(7y-ty)lagrg =5 (tyoty-Tysty)]

2
a,

cos{(t ti.)[w*— 5 (t ti')]}
°F
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Because of the odd number of indices involved in terms@ s.nd@ one
can immedietely inveoke the Riemann-Lebesgue lemma and assert that these
terms meke no significant contribution to the mean squerc value. Similar
considerations lead to the conclusion that contributions from other terms

arise only for the following combinations of indices.

term@: J=3!
term@: i=i

term(® : i=i',3=3"',1#)
i=3,i'=3",i#i"
i=)',J=1",i#}
i1=i'= j=3"'
term@: i=}
The ectuel performance of the averaging operations is exceedingly
cumbersome but basically straightforward. With approximations similar to
those used in Section III one obtains in the case of volume reverberation

the following rcsult for the variance of z(ta+tD)

2 2 2 2
2,2, © g 6 .22 +0 /2
2 _ A c Vor 3. % 2 @D° 23 2 AF T
D*{z(t +ty)} = __@_g) 5 For BB e <5 w55 S K S1B BN
32t o] ¢ o t ¢
f F F a
[ 2 2
1 1 C o] 92
= B 2258 XP|- 3 )
dp Ko,  dp 2¢ Kzo dp
1+ ——=— T T
thuE 1+ 5 1+-—————2
F 8¢ 8c
2
o] )
c_m 3(b_> w22
*— g © 6KVB¢BG\/2 (o +op, /2)
o] t
F a
hY
2 2 2
2 o] o d w 2
+ % SI%—CE"BKV R%E%Bo '—_‘—lzz'i’z—? exp{- —3 CREIEN: (49)
t o o d%p Lo K%0 “d%
a F c c
sy S aapy
8¢ 8c
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‘The exponential terms are ell similar in form to Equation (U6) and
are therefore negligible except very near to horizontal end endfire. When
they are negligible Equation (49) reduces to

2

2 A <b2>
D™{z(t+ty)) = s ™B By Ko_

a F

2 2
a 6 ~2.2 a."+0 /2
c ¢ &%) 2. 3,22 F- T
¢ m—— —— -T KV n B¢ BQ A . S
F t Ko
a ¢

¢ 3/"\

1l +

8c2

The first term of Equation (50) represents the power of the intermodulation
products of signal with the returns from various scatterers [terms@ and@
of Equation (48)]. The second term results from the intermodulation of the
returns from different scatterers [term(3) i=i',)=)',i#J in Equation (u8)]
while the last term gives the :(otal power of intermoduletion products from the
seme scetterer (false target power) [term (@) i=j=i'=j' in Equation (L8)].
The radical in thc denominator of the last term reflects the bearing dis-
crimination against false targets discussed qualitetively in Section I.
Comparison of the last two terms reveals that the last term is likely to be
small compared with the second unless the scatterer density in the illuminated
volume is very low (a situation in which the reverberation is composed of
returns from a few strong scatterers - which may clearly be regarded as false
targets).

In the ebsence of frequency modulation a completely analogous

computation lcads to the follwoing equivalent of Equation (50)
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D (zlt ptp)) = %%5 2 2 "2 KvB 3%

a
2
o 2
=l <b2> KB By 7 F vor /2
op 512 t
2
OC C3<}3:> '_‘———'
YT OBh 6 NBP 0\/2 (o5 oy £r2) _—JT
C 0'

When the primary noise source is surface reverberation p(ti ,Oi,¢i) is given
by Equetion (34). The averaging operation of Equation (48) with respect

to this distribution is basically straightforward but even more cumbersome
than the corresponding computation for volume reverberation. It has been
carried out only for terms QD ,® , and @ with i=i', j=3', i#J.and under the

assumption that the verticol dispersion 4 of scatterers satisfies

a/ sinOo

<< B
ctJ/Q J

Equation (52) demands that A/sinoo subtend an angle small compared to

B, &t the source [see Figure 7]. The approximation implied by Equation (52)

A
EiETGJG
4 j o
surface layer A (A<<<D) L I =
R | —
DB . tané _ egg
2
effective range gate

D o Cts
range to surface at beam center = cosgo= 5

|
\
X angle subtended by ——= Sin ©

Figure 7
D-27
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clearly improves with range. For realistic beam widths it should be excellent
except at extremely small ranges.

With the stated epproximations the averaging operations lecd to the
following result, equivalent to the first two (generally dominant) terms of

Equation (50)

\
2 2
22 ¢ = (t -t )
2 . A% ¢ ¥2p . -8 s
pP(a(t, +tp)) 7 < L B°<b2> K, o oxn- —3
16t o ° c ]
a F e /
2 2\Ch 12 2, 2 2 ! 2
. .2 _S; % o2 QYK ) [2lop +op /2Dy = (t-t.)
2 7¢ 2 Ko i 1@ 2 1, 2, 2, 2
2128t~ o sin“Q cf (op740,°/2)+d Slop tog /2+ay")
(53)%
In this equation Ks is the number of surfece scatterers per unit area,
2D
ts =T cose (54)
o]
and
. = 2DB°tan0° =
e c cosO°

Thus ts is the signal round trip time between the source and the point
on the surface at the center of the beam. Similerly % is the differentiel
in round trip time between surface returns from the center of the beem and
surface returns from the nominal edge (Ooipg) of the beam. [See Figure 7].

The most obvious difference between surface and volume reverberation
as expressed by Equations (50) and (53) is the presence of the exponential
terms in Equation (53). These simply reflect the fact that surface rever-
beration if a problem only when the signel round trip time to the surface

(nominally ts) is close to the signal round trip time to the target (ta).

d2
e 2
8D B9

torm has been omitted as negligible under most reasonable operating conditions,
particularly when D2d.

lA factor of the form epr— sin2¢°cosu0°coth0;} in the second
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It is interesting to observe that the allowed time differentiel ta'ts is of
the order of % for the noise component resulting from intermodulation of

signal with reverberation while the differential ta-ts can be as large as

F
beration. Thus the use of very long pulses may create s surface reverberation

\/o 2+°T2/2+092 for the intermodulstion products of reverberation with rever-

problem at ranges where it would not otherwise exist if the dominant componcnt
of Equation (53) for ta%%s is the second term (low signal to noise ratio).
This difficulty does not arise when the first term dominates (high signal to
noise ratio). The physical explanation for t.is phencmenon is simple:Tte frequenc:
modudation imposes a narrow range gate on reverberation (see Section I).

Only scatterers located such that the travel time of the signal to them is
almost exactly the same as the travel time to the target can contribute to
the intermodulation product of signal and reverberation. Whether the group
of seatterers at suitable ranges does, in fact, contribute reverberation
depends only on whether they lie within the illuminated surface area. This

is purely & matter of geometry and independent of the pulse length. Inter-
modulation of reverberation with reverberation, on the other hand, occurs

for any scatterer pair separated from each other by no more than the effective
range gate. Whcther a particular combination contributes reverberation at

the observation time (ta+tD) therefore depends bhoth on whether it received
illumination and on when it reweived illumination, i.e. cn both geometry and
pulse length.

Another interesting point of comparison between volume and surface

reverberation is the radicel in the second terms of Equations (57) and (53)

respectively. When 092 >> (0F2+0T2/2) the radical in Equation (53) reduces

D-29
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to /‘VOF +qT /2. 4 Thus the reverberation power is limited by the pulse

2 2
*on /2)

duration, as in the case of volume rewerberation. When °92<<(°F
the redical in Equation (53) reduces to JEBO. Thus further increases in
pulse length do not increase the peak surface reverberation power. This is,
of course, reasonable because the pulse duration is now sufficiently large
for revesberation from the entire illuminated surface area to reach the receive
simulaneously.

Additional differences between volume and surface reverberation concern
the t_ dependence (t:e‘-6 and ta'b with volume reverberation versus ta'7 and

-6

ta with surface reverberation) and the appearance of the factors sinOo

and sin20° in the case of surface reverberation. These differences are
attributeble to the different rate of growth with range of the number of
scatterers contributing reverberation in the two cases.

V. Output Signal to Nboise Ratio

The effectiveness of the detector is characterized by the relation of
its output signal to noise ratio with the signul to noise ratio existing in
the water. The output signal power is simply the square of the first term

of Equation (13). Using ta=t one obtains from Equation (13) and the first

b
two terms of Equation (50) (volume reverberation, frequency modulated signal)

S 128 A Kc
(¥ X Iy 5 '
22, 2 3 1_ [g_ 1 1
<b> 0 +0 /2[ 3 3 tzf?:—-z—/-?Bd)BgKvJ
2 aly’F T
(56)
A simple computation from Equation (4) gives the average reverberation
1The effective integration time o, of the low-pass filter should clearly
bte of the order of the pulse width O A more precise optimum will be obtained
later.
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b= 4 ¢ 3

pover at each receiver,

8 3,2
lv_—C(b?

Average reverberation power -(2)2 5 . 2 O KVBQBO
a

Ir taatb the peek signal power at each receiver is Aeltau.

Hence

_ 16/% A2
in 3/2 3, 2
W% te KB yBoor

)

Thus Equation (56) can be rewritten in the form

8,2
O () in

() =T onl(Ko) T
N'o E OT oc OF +UT /2 " UT (§)
N'in
V°F§+°T /2

Several features of this expression are interesting.

s
When o (N)1n << 1
Op TOp
S) YL, (Ko )i (5)2
N'o = T O 10, N in
Op *0p /2

o
When £ ( §-) > 1
+0 2/2 N'in
9 "o

e hop i) By,

(57)

(58)

(59)

(60)

(61)

Using the definition of o, (Equation (10)] it is a simple matter to determine

the optimum op for either case. From Equation (60) one obtains

O

Op Ty

The optimum op in Equation (61) is infinite. However, it is clear from
Equation (10) that only small gains in output signal to noise ratio can be

made by increasing o = above 2/2. Equation (62) therefore gives a suitable
F %

D-31
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value of OF for all input signal to noise ratios.l With this choice

g
T

o e o=
op top /2
so that Equations (60) and (61) may now be interpreted as follows:

When the input signal to noise ratio is less than unity, the output
signal to noise ratio varies with the squarr of the input signal to noise
ratio, a type of behavior generally associated with incoherent detection.

When the input signal to neise ratio exceeds unity, the output signal to noise
ratio varies linearly with the input signal to noise ratio, a characteristic
typical of coherent detection schemes. Equation (61) is, in fact, simply
one-half of the output signal to noise ratio of a coherent detector (de~
wodulating the output of a single receiver against a delayed replica of the
transmitted signal). The factor of one-half is due to the presence of noise

in each channel of the correlation detector, The replica used in the coherent
detector is, of course, noise-free. Equation (59) with oF-oT/Z, KaT-Zn x 100,
and aT-O.S is plotted in Figure (8). Also shown is the corresponding curve

-for the coherent detector. If one chooses an output signal to noise ratio

of 6 db as the mimimum level at which some significant detection capability

may be said to exist, Figure (8) indicates that the correlation detector requiree
about 8 db more imput signal to noise ratio than the coherent detector to achiewvt
this minimal performance. Even if one penalizes the coherent detector by 3

db on the grounds that the postulated knowledge concerning carrier phase is
almost certainly unavailable in practice, there remains a differential of

about 5 db.

1The presence of ambient noise - ignored thus far - would also mitigate
aga 18t a8 choice of effective smoothing times op much larger than the duration
of the demodulated signal pulse.

D-32

-

—a

L

-

e

-8

L2

£

-

[ ]

e



e Fys
I.
i

I RIFE NE N

1Ll
}
T
1
o

et 3 o]

i i B IR 1 i [H

i {EEER IR HEEE e e D i i i ]
.m...w HE T HHE mnf .m ! w {M.T"\.... M T L L ...« i m

,“r R e AT Asadl {H ] FEH

| ; il

I-I :IrlI

uE Lama

~HiE

"__. LET T e # ty HL
. I i jre g minn g T m

fess

B

i3
i
ﬂb"
Fagal el wa b
R
(B e e

0
T
T

el
:E.

e

=t fel

¥
i The

=
5

T

o ety
s
Biad baad

-H
T

L

I
Fuap |
=t
yaKwa ]

-2

I

1
Eir

}
T

%

L
T

E.

i E

T

HER R
TECCEA

=
1

1
&

i femaf

=
-

. —

i

15
4
k-

=
I
T

HiH

=
2

e

-+

-
i =

I
I

= E= N
LA 5 _.l_.q....
[ il SR
T ot (X5
<hp traf ;
=l — =

o] % e b jemt el

e Eima madbd [REE A e S

Ty

Mn. s T
] HEE il 1A
{1 i ]

F
i

F
i

RALARY Ay

[
r

e
¥
I

&
y

|
|
S

1=
B

P B

paael

W

H

i i
= and {2
-
e

ia
T

&

e En sl e

T

daa.

EEiE BT ST

e

S W .

o il S

AuR
|
et i

T =

o
N
mead N L s

e

rt
iy
T

-.4.;..,.!.4 il

i

1
i

L

Gl

1
L

T o B

=
Emas Dna s wmbas e ad

T
T
:
I

o
ey ot
HHHEE

L]

i
i
B

%
T

T
3
" E J‘:.?I}
TH

I

I-'I-I
T

=i

t
i
i

Ex
+
I

% FEP MG K gy

g g

IEHINBE S LR A et i i S ] e it R
- 1] bl ITh 4 H O v mii 5 o o i g g o
1aids m.._.ﬁﬂmu_. B u__u HHE h:._..HJ\, 331 -+b.f.-._ ych] ieeaupatid hesss £ -,._ _m. .mm Hh ._ﬂ "—_ _

ﬂ..c o .“ Mrr .x.” m u Sty P dnoamnrny # Sty P [oeE——Y [T oy

L ¢ L ] [ St [ T2 [ 2 o R, I =
» . ’ . ’ + . R ] i . [ ] t ] t » ] ‘» .as. ¥ | o " € n u - I

L S AR




The factor oT(Koc) appearing in Equation (59) can be rewritten

% 1

0
. -1 2 ] =
oofFo) = oy " F ey tieh ok (60

Since KcT is a direct measure of the signal bandwidth, its inverse may
be interpreted as the correlation time of the signal (and hence of the
reverberation). The'processing gain" factor (64) is therefore the ratio of
signal duration to signal correlation time. It can be made substantial by
the use of wide signal bandwidths. It is, of course, nothing more than the
quantitative expression of the range gating effect discussed earlier.

In the absence of frequency modulation the equivalent of Equation (59) is

o] (§ 2
®s = 3 —n — (65)
VGT 20 g . S (-f;’- ;
0. “+0 n
r ‘o
Op
With Op = 7B (66)

the "processing gain'" is of the order of unity. All other comments concerning
Equation (59) apply to Equation (65) also.
In order to avoid misinterpretation of Equations (59) and (65) it should,

perhaps, be pointed.out that the input signal to noise is also a function of

O Thus, from Equation (58)
S 1
(ﬁ'in « —5& (67)

Hence in the presence of frequency modulation [Equation (59))

c_ K S,
oy 2 for (Pl << 1
), = (68)
° K S
Koc =35 % for (ﬁoin >> 1
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Tn the abseuce of frequency moduletion [Equation (65)]

1 S
—2 for (ﬁ)in << 1
s Op P
(ﬁao « (69)
1 S
5 for (ﬁ)i >» 1

The use of short pulses is advartageous in the absence of frequency modulation
because the bandwidth (and hence the range gating effect) is determined
exlusively by Orpe In the presence of frequeney modulation pulse length

is a secondary factor, for the rise in bandwidth offsets the decrease in

input signal to noise ratio accompanying an increase in Ope For fixed band-
width (fixed KGT) the output signal to noise ratio increases monotonically

as Op decrceses, Thus the use of short pulses (with large values of K to
maintain constant bandwidth) is indicated. However, once the input signal

to noise ratio exceeds unity, further decreases in Op cause only a small

increase in output signal to noise ratio.

In the case of surface reverberation the signal to noise ratio is critically

dependent on the exponential factors in Equation (53). When (ta-ts)2 << 092

both of these factors are close to unity end one obtains the following

equivalent of Equation (59) (frequency modulated signal)

2./ 2 2 2! 5,2
5.1 990 VLT [240," 40 (%)

N'in
= et (K ) (70)
No O /2+0F23koT2/2+002) ¢ . °TJ°T /2+oF +ag (§)
;(UT /2+cF )(cT /240y ) Lt

With op = oT/VQ‘this result reduces to

’ 2, 2
(S 9\°7 "%

-yl
¥o = § op(Ka,) D' 5 e
Op /e¥0g

(11)

8
7 (®in

&
op *9g

1+ 2/2 5
O /2+og
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When O o°

9|/ *°92 n
oT(Kac) 5 = = °T(K°c) (12)
/24a

O 0
so that the "processing gain" is the same as with volume reverberation. On

the other hand, when ¢, >> ¢

T e
(o} do 2+U 2
op(Ko,) —Z——3— ¥ 20, (Ko _) (13)
c
op /2%a,

Thus the "processing gain" rises with increasing pulse length to a maximum
determined by the geometry of the illuminated surface area. As in the case)

of volume reverberation, this 6, dependence is samewhat deceptive because

T
of the dT dependence of the input signal to noise ratio. For surface rever-
beration
1
3; for OT << og
]
Pin <¢ (T4)
— for o, > @
o T e
e
Hence for low input signal to noise ratios [(§- « (§0 2]
N'o N%in
Kg
=tk i for © << ?
a 2 T °] 5 .
(2) « o == (75)
N'o F V‘“
Koc KoT 2
_— = 5. for Op >> UG
%% %

Thus the output signal to noise ratio increases with pulse duration only

vhen O exceeds Ogs i.e. the entire surface area within the beam receives

illumination simultaneously.

]

For high input signal to noise ratios [(%ﬂo « (ﬁ- ] one finds

)in
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®@o © o (76)
for all values of OT/OO' These observations are, of course, also evident from
Equation (53).

When Op >> % and the target 1s so located that o, << ta-ts <<

0

L]
V0F2+0T2/2+002 the first exponential term in Equation (53) vanishes while the

the second assumes a value close to unity.

In that case

2[ 2 7. 2
G <12V ety o s b
No "4 =T 2940 2 % Win
Viog /2+0:7) (0p "/ 2405")
or with op = oT//T
72

sy, .1 %\ *% 5.2
NoJ ™ % Op(Ko) — 7 Win (78)

Op /2+oO

Thus, it is possible to find operating conditions under which the output signal
to noise ratio varies with the square of the input signal to noise ratio for
all values of input signal to noise ratio.

Vi. Comparison With Detector Operating in Ambient Noise Limited Environment

Throughout t..e preceding discussion the received noise was assumed to
consist exlusively of reverberation. It will be interesting, for purposes of
comparison, to evaluate now the performance of the same receiver in a noise
environment consisting predominantly of ambient noise. The ambient noise will
be regarded as a stationary Gaussian random process with the power spectrum.

(w-wo) (w+w°)2
S(w) = N_¢ exp [- 7 |+ exp [- 2 (79)

fy Oy

or the autocorrelation function
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N
R(1) J’S(w) cos widw = V7 fy N, exp{- —;—icosw T (80)
0

One may think of No as the spectal level of a broadband noise whose
spectrum is being shaped by a bandpass filter of halfwidth VﬁhN centered at
frequency Wy In practice, this filter might be the inherent frequency response
characteristic of the receiving hydrophones or it might be a narrower filter
ingerted into the hydropoone outputs to discriminate against frequencies outside
of the signal range.1

If one designates the noise appearing at the two receiver outputs as

na(t) and nb(t) respectively, then from Figure 1 and Equation (1)

A (t-ta)2 [ K 2
y(t) :_E exp{- <2 ]costo(t-ta) + 3 (t-ta) ] + na(t)
a T
\
(t-tb°tt)2q K 2
] - 3 exp[- ___;-5— cos[mo(t-tb-tt) +-E (t-tb-tr) + nb(t) (81)
b T N

The detector output z(t) is related to y(t) through Equation (6),
the low pass filter weighting function w(t) being specified by Equation (7).
The signal component of z(t) is the same as in the reverberation limited case.

With tt-ta-tb the noise component assumes the form

00 ( 2]
A t—ta-p) K ‘
z(t) |noise' ?fdowm) exp|- 3 JC"‘S[“’o(t'ta'p) +3 (t-ta-p)ina(t-o)
a o T

A K 2
+ :-E dpw(p) exp| - - 3 cos[ mo(t—ta-p) + 3-(t-ta-p) ]nét-p)

00 2
j (t-ta-o)
b o

T

1Any such filter is assumed to be sufficiently broad sc that it will have
negligible effect on the signal.
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2] 2 (t,-p)? (t,-0)2
D2{2(5+tn)}-% jdpfdcw(p)w(c) expy - D 3 expy - D2
t
o o

0o
+ jdpw(p) na(t-p)nb(t-p') (82)
o

If receivers a and b are separated by more than a very few feet, it is
probably reasonable to assume that na(t) and nb(t) are statically independent.
It also appears reasonable to assume that each noise component has zero mean.
In that case the expected value of z(t) is zero and its variance is simply

the sum of the mean square values of the three terms in Equation (82). Thus

(¢} [}

a T T

cos[mo(tD-p) +% (tD-p)z] cos[mo(tp-c) + -li( (tD-o)?'] R(o-p)

a2 2 o2 (tD-p)2 (l:D-a)2
+ — dp { dow(p)w(o) ex - exp( -
4 f O[ owip P 2 P 2
tb o o Op Op )

5 cos[wo(tD-p) +-l-2(- (tD-p)z] cos[mo(tb-o) +-li(- (tD-o)z] R(o-p)

©0 [o o]
+ fdpfdow(p)w(o) Rz(o-p) (83)
[¢] (o]

where R(t) is given by Equation (80). The first two terms differ only in
the attenuation factor A/taa vs A/tb4 . Since t. . ty for all cases of interest
this difference will be ignored. The averaging operation can: now be pefformed

without difficulty, After algebraic simplification the result is

T 2. 2
2 o] - Q. N
D2 {z(taﬂ:D)} = ——A4 QNNO\/‘n——oT __—_—_—['—21——_—1 A .
t, F (c:T +<JF ) 2 2 2 22 2 ‘/ 1+ oFZQNz
4 —————=+ 20 “(0,."+0.") + K 00
2 2 N T F F'T
o 0g (84)

The output signal power is still given by the square of the first term
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of Equation (13). Hence

) A4 e 21
o 0.9 2
F N

] l "¢
(§o =3 —% Ko
No 2 o N'F - BQ 2N 2 1 1
F a N'o 2,2
2,0 g, &
21 °T F N
14— = —
4ym N 2 2,2
ta o Op ) o 2 2.2 2 2
4 —3 3 +29N (oT +oF )+K % OT
°7 %
(85)
The input signal to noise ratio at each receiver is easily computed to be
2
S A
) (86)
N'in 4
t, J?QNNO

The output signal to noise ratio can now be written in a form equivalent

to that of Equations (59) and (65)

2 (g 2
( ;.___ 1+ Q-20 2 N in : (87)
"2 2 N F 1
20 0.\1 + —mm———
N _F =X
14+ (
v 'N'in
(o 2+c 2)2
T °F 2 2. 2 2 2 2
+7 +
4 ; 20 3 + ZQN (oT g ) +K Op 97

In order to obtain a comparison with the reverberation limited case, it
is necessary to select a suitable value for the noise spectral width QN'
The best value for this purpose is that which gives the ambient noise spectrum
the form of the reverberation spectrum.

The reverberation autocorrelation can be obtained from Equation (3)

(t-t ) (t+1-t,)
et ATl Y ]
T

1 i 1 j °T

K L, 32
j) + > (t+t tj) ] (88)

cos[mo(t-ti) +§ (t~ti)2] cos[mo(t+1-t
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Carrying out the averaging operation over all random variables one obtains

3
32 32
16\F t,

2
K"T)z

1 pcoBuw 1 (89)

rev (o]

B.B OT expl (20
T

Thus the reverberation autocorrelation function [Equétion (89ﬂ and the

ambient noise autocorrelation function are identical in form if

(90!
With this value of o Equation (87) becomes
o . &2
S 1 "¢ 1 2 2,.2 ¢4 2 N'in ¢
2y - = _C_
WoTWT 17 \/“C’F *+20p +K op0p a0 2 (91)
OF 0. 4o +2° +K g,
c T T 18
U = e O
OF || bop +407 K g0 op

It 1: a simple matter to demonstrate that fquation (91) reduces to Equation
(59) when the bandwidth of the transmitted signal is determined primarily
by the frequency modulation[case (A)]. In the absence of frequency modulation
[case (B)] Equation (91) reduces to Equation (65). There is no reason to doubt
that a similar check could be obtained for frequency modulated signals of a
bandwidth comparable to 1/0T,for which no formal computations were carried
out in the reverberation jimited casea. Thus it appears that Equation (91)
may be regarded as a generalization of Equations (59) and (65), covering
intermediate values of frequency deviation KgT as well as the extremes represent
ed by cases (A) an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>